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I. PAPER SUMMARY

In order to integrate the increasing volume of stochastic
renewable generation in the modern power grid, distribution
system operators (DSOs) are exploring various methods to
manipulate both residential and commercial loads in real-
time. One promising framework known as real-time pricing
(RTP) has gained popularity because of its ability to shape
electricity demand by exposing customers to time varying
prices. However, impediments of RTP are that DSOs do not
have access to information on how customers respond to price
signals and the customers price responses are stochastic and
time varying [1].

In this paper, we consider the aforementioned real-time
electricity pricing problem faced by a DSO attempting to
manipulate the demand of its customers. Moreover, the DSO
wants to passively learn (i.e., only utilizing past responses
to price signals) the customers’ price response models while
selecting cost-minimizing daily electricity price signals. Con-
trary to previous real-time pricing methods that attempt to
learn customer price sensitivity models [2]–[6], our methods
additionally consider realistic power system constraints, e.g.,
nodal voltage, transformer capacities, and line flow limits
during the run of the learning algorithm. In real distribution
systems, it is critical that these constraints are satisfied at every
time step to ensure customers receive adequate service and to
avoid potential grid failures [7], [8]. When implementing an
RTP method, the DSO must ensure that the selected price
signals do not lead to constraint violations, even without
sufficient knowledge about how customers respond to price
signals (i.e., in early learning stages).

To achieve these goals, we make use of the multi-armed
bandit (MAB) framework, a well-known problem in reinforce-
ment learning, to select effective price signals while gathering
knowledge about the customers’ price sensitivities. Specifi-
cally, we present two modified heuristics akin to Thompson
sampling (TS) and upper-confidence bound (UCB) to tackle
the polarizing tradeoff between exploration of untested price
signals and exploitation of well-performing price signals while
ensuring grid reliability. It is important to note that stan-
dard bandit heuristics cannot guarantee that the reliability

constraints are upheld during the learning procedure, so we
present modified versions while retaining the fundamental
principles they are based on. Accordingly, we provide a
discussion on reliability guarantees for each of the modified
learning procedures, a discussion on the regret performance
of each heuristic, and extensive simulation results highlighting
the strengths of each method.

II. MAIN CONTRIBUTIONS

The main contributions of this paper are as follows:
• We use the multi-armed bandit framework to model

the effects of the stochastic and unknown nature of
customers’ price responses.

• Our problem model takes into account realistic grid
reliability constraints that are critical for daily operation.

• We present two modified heuristics based on Thompson
sampling and upper-confidence bound as solutions to the
reliability constrained learning and pricing problem.

• We provide discussion on the performance of each pricing
method, discussion on the reliability guarantees of each
heuristic, and a large-scale case study demonstrating the
efficacy of each.
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