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We study a real-time smart charging algorithm for electric vehicles (EVs) at a workplace parking
n order to minimize electricity cost from time-ot-use electricity rates and demand charges
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EV Smart Charging at Large-Scale Facilities

e 2012: 120,000 EVs sold
e 2021: 120,000 EVs sold per week
Smart charging is increasingly critical for large-scale facilities

(e.g., workplaces, apartment complexes, shopping centers, airports,
fleet depots, etc.)

2022 Global EV Outlook, International Energy Agency (IEA)

Implementation Challenges

SLAC & Google Datasets

Collaboration with the GISMO group at SLAC, have access to a
large historical EV charging dataset:

® Workplaces throughout the Bay Area
® Most sessions exhibit typical workplace behavior

® 15-minute interval data for over 10,000 sessions

Smart Charging Objectives

EV owner utility | upoy(e) = > log(>_, ei(t) + 1)

Quick charge ugc(e) = >, T 3™ ei(t)

Offline Objective + Constraints

® Start times, end times, 15 minute avg. power delivered, total
energy delivered, etc.

Opportunity to showcase the benefits of various smart

charging strategies

Profit upm(€) = 430 30; ei(t) — 50, p(t) ( X eile) + (1))
Demand charges | upc(e) = —p - max: ( >_; ei(t) + z(t))

Load flattening | uie(e) =—>, (D, eit) + z(t))2

Equal sharing ugs(e) = — >, ei(t)?

Energy demand | uep(e) = - X (| Seai(®) - o)

® Real-world systems with human users

meax Ule) = maxz wr ur(e) ® QOperate in real-time without knowledge of future
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Test Case 1: User Utility Maximization with TOU Rates

® Facility manager — maximize user utility under TOU

electricity rates

® A large company campus who wants to provide free and
effective charging for employees

Ul(e) — 15Uou(e) + Upm(e) + IOQ(ULF(E) + Ugs(e))

Test Case 1: Results
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Figure: Total energy delivered for the various cases including
L east-Laxity-First and Earliest-Deadline-First (both with perfect
departure time knowledge) with varying transformer capacities.

Test Case 1: Results
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Figure: Cost per KWh from TOU rates for the uncontrolled, offline
optimal, and 4 MPC test cases

Test Case 2: Profit Maximization with TOU Rates and
Demand Charges

e Facility manager — maximize profit while delivering adequate
energy to each customer

® For-profit third-party parking structure equipped with chargers
and wants to minimize TOU electricity costs and demand
charges

Uz(e) = 10(Upm(e) + ch(e)) -+ Uou(e) -+ 10_9 (ULF(E) + U.Es(e))

Test Case 2: Results

June 17th, 2019 Daily Load Comparison
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Figure: Daily loads of the charging facility for various charging strategies.




