
Online Optimization and Learning for Sustainable
Cyber-Human-Physical Systems

Nathaniel Tucker, Ph.D.

Monday, June 27, 2022

1 / 105



Global Energy Transition
Two Major Components

2 / 105



Global Energy Transition
Two Major Components

2 / 105



Global Energy Transition
Two Major Components

Transportation Electrification

2 / 105



Global Energy Transition
Two Major Components

Transportation Electrification

• Infrastructure management

• Effects on the grid

2 / 105



Global Energy Transition
Two Major Components

Transportation Electrification

• Infrastructure management

• Effects on the grid

Grid Modernization

2 / 105



Global Energy Transition
Two Major Components

Transportation Electrification

• Infrastructure management

• Effects on the grid

Grid Modernization

• New flexible loads

• Increased renewables

2 / 105



Global Energy Transition
Two Major Components

Transportation Electrification

• Infrastructure management

• Effects on the grid

Grid Modernization

• New flexible loads

• Increased renewables

Both can benefit from optimization and learning mechanisms
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[Tucker, Alizadeh, IEEE TSG, ’19] An Online Admission Control
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Part 1
An Online Scheduling Algorithm for a Community Energy Storage

System
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Motivation
Individual Consumers/Prosumers

Pros:

• Lower electricity bills

• Reduce CO2 emissions

• Utilize larger portion of
self-generated energy

Cons:

• Large upfront investment

• Low utilization (single-family
home)

• Long period for ROI to
breakeven

What can be done to lower costs and increase utilization?

11 / 105



Motivation
Individual Consumers/Prosumers

Pros:

• Lower electricity bills

• Reduce CO2 emissions

• Utilize larger portion of
self-generated energy

Cons:

• Large upfront investment

• Low utilization (single-family
home)

• Long period for ROI to
breakeven

What can be done to lower costs and increase utilization?

11 / 105



Motivation
Individual Consumers/Prosumers

Pros:

• Lower electricity bills

• Reduce CO2 emissions

• Utilize larger portion of
self-generated energy

Cons:

• Large upfront investment

• Low utilization (single-family
home)

• Long period for ROI to
breakeven

What can be done to lower costs and increase utilization?

11 / 105



Motivation
Individual Consumers/Prosumers

Pros:

• Lower electricity bills

• Reduce CO2 emissions

• Utilize larger portion of
self-generated energy

Cons:

• Large upfront investment

• Low utilization (single-family
home)

• Long period for ROI to
breakeven

What can be done to lower costs and increase utilization?

11 / 105



Energy Communities

• Split investment costs
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What are the main requirements for an energy community?

• Connected members (grid and communication)

• Distributed renewable generation

• Community energy storage system (CES)

• CES scheduling strategy
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CES Resources

Limited resources:

• Energy capacity, up to Ê kWh

• Charging power, up to P̂c kW

• Discharging power, up to P̂d kW
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CES Objectives

CES Manager’s Objectives:

• Maximize utility for community

• Recover investment cost

• Handle unknown demand, privacy
concerns, real-time operation

Online pricing mechanisms for CES reservations
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Related CES Scheduling Works

• [Tushar, et al., ’16],[Chen, et al., ’17],[Liu, et al., ’17]
• Capacity reservation must be constant for long-term

reservations

• [Zhong, et al., ’20]
• Scheduling mechanism can violate CES constraints

• [Zhao, et al., ’19]
• Prices for ‘virtual’ portions of the CES, but prices remain

constant for the whole horizon

Our Contributions:

• Allow users to modify usage easily

• Uphold CES constraints

• Incentivize diverse usage patterns
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Online Solution’s Goals

• Design online scheduling strategy for community energy
storage systems with shared charging, discharging, and
capacity resources to maximize social welfare

• Make irrevocable scheduling decisions in an online fashion

• Post resource prices, users select to maximize own utility

• Payment at the time of reservation

• Handle adversarial request sequences (due to the
unpredictable generation and demand)

• Incentivize diverse charging/discharging schedules

• Provide performance guarantees
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System Description - Flow Chart

18 / 105



System Description - Flow Chart

19 / 105



System Description - Flow Chart

20 / 105



System Description - Flow Chart

21 / 105



User Characteristics

• Users want to store energy to be used at a later time (from
cheap TOU rates or from excess solar generation)

• Potential schedules that benefit user n: s ∈ Sn

• t−n : Start time

• t+ns : End time

• insc(t): Charge/discharge schedule (+ charging, - discharging)

• inse(t): Energy capacity reservation

• vns : Valuation
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Valuations

Example valuation from free solar generation:
(Value of replacing grid energy with free solar)

vns = −
∑
t

pgrid(t)insc(t)|insc (t)<0

Example valuation from TOU energy arbitrage:
(Value of buying cheap grid energy for later use)

vns =−
∑
t

pgrid(t)insc(t)|insc (t)<0

−
∑
t

pgrid(t)insc(t)|insc (t)>0
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Proposed Solution: Online Pricing/Remuneration Heuristic
• Determine the prices for the shared resources as requests arrive

• Proposed Solution: the prices pe(t), pc(t), and pd(t) have
heuristic updating functions
• Example payment for schedule s:

p̃ns? =
∑
T

[
inse(t)pe(t) + insc(t)pc(t) + insc(t)pd(t)

]
• We are able to provide performance guarantees for pricing

functions of the following form:

pe(t) =
(Le
R

)(RUe

Le

) ye (t)

Ê , ye(t) ∈ [0, Ê ],

pc(t) =
(Lc
R

)(RUc

Lc

) yc (t)

P̂c , yc(t) ∈ [−P̂d , P̂c ],

pd(t) =
(Ld
R

)(RUd

Ld

)−yc (t)

P̂d , yc(t) ∈ [−P̂d , P̂c ].
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Example

User A pays:
Pc(12 : 00pm)
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Example

User A pays:
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Offline Formulation

max
x

∑
N ,Sn

vnsxns

subject to:

xns ∈ {0, 1}, ∀n ∈ N , s ∈ Sn∑
Sn

xns ≤ 1, ∀n ∈ N

ye(t) ≤ Ê , ∀t ∈ T
yc(t) ≤ P̂c , ∀t ∈ T
yc(t) ≥ −P̂d , ∀t ∈ T
where:

ye(t) =
∑
N ,Sn

inse(t)xns

yc(t) =
∑
N ,Sn

insc(t)xns
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Performance Guarantee: Competitive Ratio

• Competitive ratio:

Optimal Offline Solution’s Social Welfare

Worst Case[Online Mechanism’s Social Welfare]
≥ 1

• An online mechanism is “α-competitive” when:

α ≥ Optimal Offline Solution’s Social Welfare

Worst Case[Online Mechanism’s Social Welfare]
≥ 1
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Proof Outline

• Ensure that the “social welfare generated” by each CES
reservation is above a “threshold value”

• Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:(

p(t)− f ′(y(t))
)
dy(t) ≥ 1

α(t)
f ∗
′
(p(t))dp(t)

“Social welfare generated” ≥ “Threshold value”

• Resulting competitive ratio is the maximum α(t) over all
resources and time.
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Proof Outline

The Generalized Differential Allocation-Payment Relationship for
the payment and remuneration of two coupled resources (resources
a and b) for a given parameter α ≥ 1 is:[

pa(t)− f ′a(ya(t))
]
dya(t) +

[
pb(t)− f ′b(yb(t))

]
dyb(t)

≥ 1

α(t)

[
f ∗
′

a (pa(t))dpa(t) + f ∗
′

b (pb(t))dpb(t)
]

Competitive Ratio
The CES schedules generated by our pricing functions are

α-competitive in welfare over N usage requests:

α = ln
(RUc,d

Lc,d

)
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Example Input Sequences

55 / 105



Example Input Sequences

56 / 105



Example Input Sequences

57 / 105



Example Input Sequences

58 / 105



Example Input Sequences

59 / 105



Example Input Sequences

60 / 105



Los Angeles Case Study
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Recap Part 1

Online scheduling strategy for community energy storage systems
via heuristic pricing functions in order to maximize social welfare:

1. Shared resource manager that optimizes CES usage

2. Promotes diverse charging/discharging patterns

3. Robust to adversarially chosen request sequences and is
α-competitive in social welfare to the optimal offline solution
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Part 2
Real-World Implementations
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Projects
Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

• Benefits of coordinated EV
charging at workplaces

• SLAC & Google campuses

• PESGM 2022, SGC 2022

• Optimize charge and routes
of an EV bus fleet

• Stanford Marguerite Shuttle

• PESGM 2020
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EV Smart Charging at Large-Scale Facilities

• 2012: 120,000 EVs sold

• 2021: 120,000 EVs sold per week

2022 Global EV Outlook, International Energy Agency (IEA)
Smart charging is increasingly critical for large-scale facilities
(e.g., workplaces, apartment complexes, shopping centers, airports,
fleet depots, etc.)
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SLAC & Google Datasets

Collaboration with the GISMO group at SLAC, have access to a
large historical EV charging dataset:

• Workplaces throughout the Bay Area

• Most sessions exhibit typical workplace behavior

• 15-minute interval data for over 10,000 sessions

• Start times, end times, 15 minute avg. power delivered, total
energy delivered, etc.

Opportunity to showcase the benefits of various smart
charging strategies
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Smart Charging Objectives

EV owner utility uOU(e) =
∑

i log(
∑

t ei (t) + 1)

Quick charge uQC (e) =
∑

t
T−t+1

T

∑
i ei (t)

Profit uPM(e) = q
∑

t

∑
i ei (t)−

∑
t p(t)

(∑
i ei (t) + z(t)

)
Demand charges uDC (e) = −p̂ ·maxt

(∑
i ei (t) + z(t)

)
Load flattening uLF (e) = −

∑
t

(∑
i ei (t) + z(t)

)2
Equal sharing uES(e) = −

∑
t,i ei (t)2

Energy demand uED(e) = −
∑

i

(
|
∑

t ei (t)− di |
)
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Offline Objective + Constraints

max
e

U(e) = max
e

F∑
f=1

wf uf (e)
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Offline Objective + Constraints

max
e

U(e) = max
e

F∑
f=1

wf uf (e)

subject to:

0 ≤ ei (t) ≤ emax , ∀t, i
ei (t) = 0, ∀t /∈ [tai , t

d
i ]∑

t

ei (t) ≤ di , ∀i∑
i

ei (t) ≤ etrans , ∀t
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Implementation Challenges

• Real-world systems with human users

• Operate in real-time without knowledge of future

• Adapt as more information is revealed

• Infrastructure constraints coupling all charging profiles

• Limited information from the EV
• Inaccurate information from the EV

• 18.6% percentage error in user predicted departure times1

1[Lee, Sharma, Low, ’21] Research Tools for Smart EV Charging
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Test Case 1: User Utility Maximization with TOU Rates

• Facility manager → maximize user utility under TOU
electricity rates

• A large company campus who wants to provide free and
effective charging for employees

U1(e) = 15uOU(e) + uPM(e) + 10−9
(
uLF (e) + uES(e)

)
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Test Case 1: Results

Figure: Total energy delivered for the various cases including
Least-Laxity-First and Earliest-Deadline-First (both with perfect
departure time knowledge) with varying transformer capacities.
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Test Case 1: Results

Figure: Cost per KWh from TOU rates for the uncontrolled, offline
optimal, and 4 MPC test cases
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Test Case 2: Profit Maximization with TOU Rates and
Demand Charges

• Facility manager → maximize profit while delivering adequate
energy to each customer

• For-profit third-party parking structure equipped with chargers
and wants to minimize TOU electricity costs and demand
charges

U2(e) = 10
(
uPM(e) + uDC (e)

)
+ uOU(e) + 10−9

(
uLF (e) + uES(e)

)
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Test Case 2: Results
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Test Case 2: Results

Figure: Daily loads of the charging facility for various charging strategies.
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Test Case 2: Results

Figure: Daily loads of the charging facility for various charging strategies.
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Recap EV Smart Charging

Online optimization framework for workplace EV charging

• Customizable utility functions

• Accounts for infrastructure constraints

• Can be modified based on user data availability/accuracy

• Outperforms FCFS, LLF, EDF in both energy delivery and
profit maximization
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Stanford Marguerite Shuttle

• 38 BYD Electric Buses

• 23 double port chargers

• 352 unique trips per day

• 1431 miles per day
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Minimal Cost Operational Strategy

• Route assignment

• Recharge schedule

• Auxiliary diesel bus usage

• On-site solar sizing

• Operator preferences

$715/day → $316/day → $92/day
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Recap - Online Optimization and Learning for CHPS
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What’s Next?
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Thank you!

• Mahnoosh Alizadeh

• Committee

• Gustavo Cezar, SLAC National Lab

• UCSB Institute for Energy Efficiency (IEE)

• Smart Infrastructure Systems Lab

• UCSB ECE graduate students
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Online Optimization Framework

• Rolling horizon optimization
• Future model: certainty equivalence

• Account for future arrivals
• Utilize an “average day” model

• Scenario generation/pruning for EVs’ departure times
• Users can input multiple departure times
• Can be generated from population/personal datasets

• Modify utility functions and constraints
• Demand charge utility function
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Online Optimization Framework

max
e

∑
i

∑
n

1

Cn

[
U(ei , xi ,n)

]
+
∑
j

[
U(ej , xj)

]
subject to:

0 ≤ ek(t) ≤ emax , ∀k = i , j , ∀t
e T
i xi ,n ≤ di , ∀i
e T
j xj ≥ dj , ∀j∑
k=i ,j

ek(t) ≤ etrans , ∀t

êinc ≥
∑
k=i ,j

ek(t)− êold , ∀t

êinc ≥ 0
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Real-Time Smart Charging Algorithm (RTSCA)

Algorithm 1 Real-Time Smart Charging
for each day do

Update current parking lot state
for each 15 minute interval t do

if new departure from parking lot then
Update parking lot state

end if
if new arrival to parking lot then

Generate/solicit N potential departure times for new arrival
Update Parking lot state

end if
Formulate optimization for time t:
for each EV i plugged in at time t do

Add EV i to total objective function
Add EV i to active constraints

end for
for each future EV j in daily model tmodel > t do

Add EV j to total objective function
Add EV j to active constraints

end for
Solve optimization for time t
Store planned energy schedule for each EV i
Set each EVSE’s output power for the current 15 minute interval
Update peak load êold for demand charge calculation (if a new peak load is observed)

end for
end for
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Update peak load êold for demand charge calculation (if a new peak load is observed)

end for
end for

101 / 105



Real-Time Smart Charging Algorithm (RTSCA)

Algorithm 1 Real-Time Smart Charging
for each day do

Update current parking lot state
for each 15 minute interval t do

if new departure from parking lot then
Update parking lot state

end if
if new arrival to parking lot then

Generate/solicit N potential departure times for new arrival
Update Parking lot state

end if
Formulate optimization for time t:
for each EV i plugged in at time t do

Add EV i to total objective function
Add EV i to active constraints

end for
for each future EV j in daily model tmodel > t do

Add EV j to total objective function
Add EV j to active constraints

end for
Solve optimization for time t
Store planned energy schedule for each EV i
Set each EVSE’s output power for the current 15 minute interval
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