Online Optimization and Learning for Sustainable Cyber-Human-Physical Systems

Nathaniel Tucker, Ph.D.

Monday, June 27, 2022

By 2040, electric cars could outsell gasoline-powered cars

Over the next two decades, sales of electric cars may begin to outstrip global sales of internal combustion cars.

Transportation Electrification

Transportation Electrification

By 2040, electric cars could outsell gasoline-powered cars

- Infrastructure management
- Effects on the grid

By 2040, electric cars could outsell gasoline-powered cars

Power generation Wind power Grid monitoring

Power transmission

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

By 2040, electric cars could outsell gasoline-powered cars

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

- New flexible loads
- Increased renewables

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

- New flexible loads
- Increased renewables

Both can benefit from optimization and learning mechanisms

[Tucker, Alizadeh, IEEE TSG, '19] An Online Admission Control Mechanism for EVs at Public Parking Infrastructures

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$ Subject to: operational constraints of the grid

[Tucker, Moradipari, Alizadeh, IEEE TSG, '20] Constrained Thompson Sampling for Real-Time Electricity Pricing with Grid Reliability Constraints

Part 1

An Online Scheduling Algorithm for a Community Energy Storage System

Individual Consumers/Prosumers

Individual Consumers/Prosumers

Individual Consumers/Prosumers

Pros:

- Lower electricity bills
- Reduce CO2 emissions
- Utilize larger portion of self-generated energy

Individual Consumers/Prosumers

Pros:

- Lower electricity bills
- Reduce CO2 emissions
- Utilize larger portion of self-generated energy

Cons:

- Large upfront investment
- Low utilization (single-family home)
- Long period for ROI to breakeven

Individual Consumers/Prosumers

Pros:

- Lower electricity bills
- Reduce CO2 emissions
- Utilize larger portion of self-generated energy

Cons:

- Large upfront investment
- Low utilization (single-family home)
- Long period for ROI to breakeven

What can be done to lower costs and increase utilization?

- Split investment costs
- Diversify loads
- Utilize excess renewable generation within the community

What are the main requirements for an energy community?

What are the main requirements for an energy community?

- Connected members (grid and communication)
- Distributed renewable generation
- Community energy storage system (CES)
- CES scheduling strategy

CES Resources

Limited resources:

Buildings & Homes

CES Resources

Buildings & Homes

Limited resources:

- Energy capacity, up to \hat{E} kWh
- Charging power, up to \hat{P}_c kW
- Discharging power, up to \hat{P}_d kW

CES Objectives

CES Manager's Objectives:

Buildings & Homes

CES Objectives

Buildings & Homes

CES Manager's Objectives:

- Maximize utility for community
- Recover investment cost
- Handle unknown demand, privacy concerns, real-time operation

CES Objectives

Buildings & Homes

CES Manager's Objectives:

- Maximize utility for community
- Recover investment cost
- Handle unknown demand, privacy concerns, real-time operation

Online pricing mechanisms for CES reservations

Related CES Scheduling Works

- [Tushar, et al., '16],[Chen, et al., '17],[Liu, et al., '17]
 - Capacity reservation must be constant for long-term reservations
- [Zhong, et al., '20]
 - Scheduling mechanism can violate CES constraints
- [Zhao, et al., '19]
 - Prices for 'virtual' portions of the CES, but prices remain constant for the whole horizon

Related CES Scheduling Works

- [Tushar, et al., '16],[Chen, et al., '17],[Liu, et al., '17]
 - Capacity reservation must be constant for long-term reservations
- [Zhong, et al., '20]
 - Scheduling mechanism can violate CES constraints
- [Zhao, et al., '19]
 - Prices for 'virtual' portions of the CES, but prices remain constant for the whole horizon

Our Contributions:

Related CES Scheduling Works

- [Tushar, et al., '16],[Chen, et al., '17],[Liu, et al., '17]
 - Capacity reservation must be constant for long-term reservations
- [Zhong, et al., '20]
 - Scheduling mechanism can violate CES constraints
- [Zhao, et al., '19]
 - Prices for 'virtual' portions of the CES, but prices remain constant for the whole horizon

Our Contributions:

- Allow users to modify usage easily
- Uphold CES constraints
- Incentivize diverse usage patterns

Online Solution's Goals

• Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare

Online Solution's Goals

- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Post resource prices, users select to maximize own utility

- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Post resource prices, users select to maximize own utility
- Payment at the time of reservation

- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Post resource prices, users select to maximize own utility
- Payment at the time of reservation
- Handle adversarial request sequences (due to the unpredictable generation and demand)

- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Post resource prices, users select to maximize own utility
- Payment at the time of reservation
- Handle adversarial request sequences (due to the unpredictable generation and demand)
- Incentivize diverse charging/discharging schedules

- Design online scheduling strategy for community energy storage systems with shared charging, discharging, and capacity resources to maximize social welfare
- Make irrevocable scheduling decisions in an online fashion
- Post resource prices, users select to maximize own utility
- Payment at the time of reservation
- Handle adversarial request sequences (due to the unpredictable generation and demand)
- Incentivize diverse charging/discharging schedules
- Provide performance guarantees

User Characteristics

- Users want to store energy to be used at a later time (from cheap TOU rates or from excess solar generation)
- Potential schedules that benefit user $n: s \in \mathcal{S}_n$

User Characteristics

- Users want to store energy to be used at a later time (from cheap TOU rates or from excess solar generation)
- Potential schedules that benefit user *n*: $s \in \mathcal{S}_n$
- t_n^- : Start time
- t_{ns}^+ : End time
- *i_{nsc}(t)*: Charge/discharge schedule (+ charging, discharging)
- *i_{nse}(t)*: Energy capacity reservation
- *v_{ns}*: Valuation

Valuations

Example valuation from free solar generation: (Value of replacing grid energy with free solar)

$$v_{ns} = -\sum_t p_{ ext{grid}}(t) i_{nsc}(t) ert_{i_{nsc}}(t) ert_{i_{nsc}}(t)$$

Valuations

Example valuation from free solar generation: (Value of replacing grid energy with free solar)

$$v_{ns} = -\sum_t p_{ ext{grid}}(t) i_{nsc}(t) ert_{i_{nsc}}(t) ert_{i_{nsc}}(t)$$

Example valuation from TOU energy arbitrage: (Value of buying cheap grid energy for later use)

$$egin{aligned} & \mathcal{P}_{ns} = -\sum_t \mathcal{P}_{ ext{grid}}(t) i_{nsc}(t) ert_{i_{nsc}}(t) ert_{i_{nsc}}(t$$

• Determine the prices for the shared resources as requests arrive

- Determine the prices for the shared resources as requests arrive
- Proposed Solution: the prices $p_e(t)$, $p_c(t)$, and $p_d(t)$ have heuristic updating functions

- Determine the prices for the shared resources as requests arrive
- Proposed Solution: the prices $p_e(t)$, $p_c(t)$, and $p_d(t)$ have heuristic updating functions
- Example payment for schedule s:

$$\widetilde{p}_{ns^{\star}} = \sum_{\mathcal{T}} \left[i_{nse}(t) p_{e}(t) + i_{nsc}(t) p_{c}(t) + i_{nsc}(t) p_{d}(t) \right]$$

- Determine the prices for the shared resources as requests arrive
- Proposed Solution: the prices $p_e(t)$, $p_c(t)$, and $p_d(t)$ have heuristic updating functions
- Example payment for schedule s:

$$\widetilde{p}_{ns^{\star}} = \sum_{\mathcal{T}} \left[i_{nse}(t) p_{e}(t) + i_{nsc}(t) p_{c}(t) + i_{nsc}(t) p_{d}(t) \right]$$

• We are able to provide performance guarantees for pricing functions of the following form:

- Determine the prices for the shared resources as requests arrive
- Proposed Solution: the prices $p_e(t)$, $p_c(t)$, and $p_d(t)$ have heuristic updating functions
- Example payment for schedule s:

$$\widetilde{p}_{ns^{\star}} = \sum_{\mathcal{T}} \left[i_{nse}(t) p_{e}(t) + i_{nsc}(t) p_{c}(t) + i_{nsc}(t) p_{d}(t) \right]$$

• We are able to provide performance guarantees for pricing functions of the following form:

$$p_e(t) = \left(\frac{L_e}{R}\right) \left(\frac{RU_e}{L_e}\right)^{\frac{y_e(t)}{\hat{E}}}, \qquad y_e(t) \in [0, \hat{E}],$$

$$p_c(t) = \left(\frac{L_c}{R}\right) \left(\frac{RU_c}{L_c}\right)^{\frac{y_c(t)}{\hat{P}_c}}, \qquad y_c(t) \in [-\hat{P}_d, \hat{P}_c],$$

$$p_d(t) = \left(\frac{L_d}{R}\right) \left(\frac{RU_d}{L_d}\right)^{\frac{-y_c(t)}{\hat{P}_d}}, \qquad y_c(t) \in [-\hat{P}_d, \hat{P}_c].$$

User A pays: $P_c(12:00pm)$

User A pays: $P_c(12:00pm) - P_d(12:00pm)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm) - P_c(6:00pm)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm) - P_c(6:00pm)$ User B pays: $P_c(6:00am)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm) - P_c(6:00pm)$ User B pays: $P_c(6:00am) - P_d(6:00am)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm) - P_c(6:00pm)$ User B pays: $P_c(6:00am) - P_d(6:00am) + P_d(12:00pm) - P_c(12:00pm)$

User A pays: $P_c(12:00pm) - P_d(12:00pm) + P_d(6:00pm) - P_c(6:00pm)$ User B pays: $P_c(6:00am) - P_d(6:00am) + P_d(12:00pm) - P_c(12:00pm)$

Buildings & Homes

Buildings & Homes

CES Manager

45 / 105

t=t+1

Offline Formulation

$$\begin{split} \max_{x} \sum_{\mathcal{N}, \mathcal{S}_{n}} v_{ns} x_{ns} \\ \text{subject to:} \\ x_{ns} \in \{0, 1\}, & \forall n \in \mathcal{N}, s \in \mathcal{S}_{n} \\ \sum_{S_{n}} x_{ns} \leq 1, & \forall n \in \mathcal{N} \\ y_{e}(t) \leq \hat{E}, & \forall t \in \mathcal{T} \\ y_{c}(t) \leq \hat{P}_{c}, & \forall t \in \mathcal{T} \\ y_{c}(t) \geq -\hat{P}_{d}, & \forall t \in \mathcal{T} \\ \text{where:} \\ y_{e}(t) = \sum_{\mathcal{N}, \mathcal{S}_{n}} i_{nse}(t) x_{ns} \\ y_{c}(t) = \sum_{\mathcal{N}, \mathcal{S}_{n}} i_{nsc}(t) x_{ns} \end{split}$$

51/105

Performance Guarantee: Competitive Ratio

• Competitive ratio:

 $\frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

Performance Guarantee: Competitive Ratio

• Competitive ratio:

 $\frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

• An online mechanism is " α -competitive" when:

 $\alpha \geq \frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

• Ensure that the "social welfare generated" by each CES reservation is above a "threshold value"

- Ensure that the "social welfare generated" by each CES reservation is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t))) dy(t) \geq rac{1}{lpha(t)} f^{*'}(p(t)) dp(t)$$

- Ensure that the "social welfare generated" by each CES reservation is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t)))dy(t) \ge \frac{1}{\alpha(t)}f^{*'}(p(t))dp(t)$$

"Social welfare generated" \ge "Threshold value"

53/105

- Ensure that the "social welfare generated" by each CES reservation is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t))) dy(t) \ge \frac{1}{\alpha(t)} f^{*'}(p(t)) dp(t)$$

"Social welfare generated" \geq "Threshold value"

 Resulting competitive ratio is the maximum α(t) over all resources and time.

The Generalized Differential Allocation-Payment Relationship for the payment and remuneration of two coupled resources (resources a and b) for a given parameter $\alpha \ge 1$ is:

$$egin{aligned} &\left[p_{a}(t)-f_{a}'(y_{a}(t))
ight]\mathrm{d}y_{a}(t)+\left[p_{b}(t)-f_{b}'(y_{b}(t))
ight]\mathrm{d}y_{b}(t)\ &\geqrac{1}{lpha(t)}iggl[f_{a}^{*'}(p_{a}(t))\mathrm{d}p_{a}(t)+f_{b}^{*'}(p_{b}(t))\mathrm{d}p_{b}(t)iggr] \end{aligned}$$

The Generalized Differential Allocation-Payment Relationship for the payment and remuneration of two coupled resources (resources a and b) for a given parameter $\alpha \ge 1$ is:

$$egin{split} & \left[p_a(t)-f_a'(y_a(t))
ight]\mathrm{d}y_a(t)+\left[p_b(t)-f_b'(y_b(t))
ight]\mathrm{d}y_b(t)\ &\geq rac{1}{lpha(t)}igg[f_a^{*'}(p_a(t))\mathrm{d}p_a(t)+f_b^{*'}(p_b(t))\mathrm{d}p_b(t)igg] \end{split}$$

Competitive Ratio

The CES schedules generated by our pricing functions are α -competitive in welfare over *N* usage requests:

$$\alpha = \ln \left(\frac{R U_{c,d}}{L_{c,d}} \right)$$

Online scheduling strategy for community energy storage systems via heuristic pricing functions in order to maximize social welfare:

Online scheduling strategy for community energy storage systems via heuristic pricing functions in order to maximize social welfare:

1. Shared resource manager that optimizes CES usage

Online scheduling strategy for community energy storage systems via heuristic pricing functions in order to maximize social welfare:

- 1. Shared resource manager that optimizes CES usage
- 2. Promotes diverse charging/discharging patterns

Online scheduling strategy for community energy storage systems via heuristic pricing functions in order to maximize social welfare:

- 1. Shared resource manager that optimizes CES usage
- 2. Promotes diverse charging/discharging patterns
- 3. Robust to adversarially chosen request sequences and is α -competitive in social welfare to the optimal offline solution

Part 2 Real-World Implementations

Projects

Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

Projects

Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

- Benefits of coordinated EV charging at workplaces
- SLAC & Google campuses
- PESGM 2022, SGC 2022
Projects

Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

- Benefits of coordinated EV charging at workplaces
- SLAC & Google campuses
- PESGM 2022, SGC 2022

- Optimize charge and routes of an EV bus fleet
- Stanford Marguerite Shuttle
- PESGM 2020

• 2012: 120,000 EVs sold

2022 Global EV Outlook, International Energy Agency (IEA)

- 2012: 120,000 EVs sold
- 2021: 120,000 EVs sold per week

2022 Global EV Outlook, International Energy Agency (IEA)

- 2012: 120,000 EVs sold
- 2021: 120,000 EVs sold per week

Smart charging is increasingly critical for large-scale facilities (e.g., workplaces, apartment complexes, shopping centers, airports, fleet depots, etc.)

2022 Global EV Outlook, International Energy Agency (IEA)

SLAC & Google Datasets

Collaboration with the GISMO group at SLAC, have access to a large historical EV charging dataset:

- Workplaces throughout the Bay Area
- Most sessions exhibit typical workplace behavior
- 15-minute interval data for over 10,000 sessions
- Start times, end times, 15 minute avg. power delivered, total energy delivered, etc.

Opportunity to showcase the benefits of various smart charging strategies

Smart Charging Objectives

EV owner utility	$u_{OU}(e) = \sum_i \log(\sum_t e_i(t) + 1)$
Quick charge	$u_{QC}(e) = \sum_t \frac{T-t+1}{T} \sum_i e_i(t)$
Profit	$u_{PM}(e) = q \sum_t \sum_i e_i(t) - \sum_t p(t) \Big(\sum_i e_i(t) + z(t) \Big)$
Demand charges	$u_{DC}(e) = -\hat{p} \cdot \max_t \left(\sum_i e_i(t) + z(t) \right)$
Load flattening	$u_{LF}(e) = -\sum_{t} \left(\sum_{i} e_i(t) + z(t)\right)^2$
Equal sharing	$u_{ES}(e) = -\sum_{t,i} e_i(t)^2$
Energy demand	$u_{ED}(e) = -\sum_i \left(\left \sum_t e_i(t) - d_i \right \right)$

Offline Objective + Constraints

$$\max_{e} U(e) = \max_{e} \sum_{f=1}^{F} w_f u_f(e)$$

Offline Objective + Constraints

$$\max_{e} U(e) = \max_{e} \sum_{f=1}^{F} w_{f} u_{f}(e)$$

subject to:

 $egin{aligned} 0 &\leq e_i(t) \leq e_{max}, & orall t, i \ e_i(t) &= 0, & orall t
otin t
otint$

Implementation Challenges

- Real-world systems with human users
- Operate in real-time without knowledge of future
- Adapt as more information is revealed
- Infrastructure constraints coupling all charging profiles
- Limited information from the EV
- Inaccurate information from the EV
 - 18.6% percentage error in user predicted departure times¹

¹[Lee, Sharma, Low, '21] Research Tools for Smart EV Charging

Test Case 1: User Utility Maximization with TOU Rates

- Facility manager \rightarrow maximize user utility under TOU electricity rates
- A large company campus who wants to provide free and effective charging for employees

$$U_1(e) = 15u_{OU}(e) + u_{PM}(e) + 10^{-9} (u_{LF}(e) + u_{ES}(e))$$

Test Case 1: Results

Total Energy Delivered per Day (KWh)

Figure: Total energy delivered for the various cases including Least-Laxity-First and Earliest-Deadline-First (both with perfect departure time knowledge) with varying transformer capacities.

Test Case 1: Results

Cost per KWh from TOU Rates (\$)

Figure: Cost per KWh from TOU rates for the uncontrolled, offline optimal, and 4 MPC test cases

Test Case 2: Profit Maximization with TOU Rates and Demand Charges

- Facility manager \rightarrow maximize profit while delivering adequate energy to each customer
- For-profit third-party parking structure equipped with chargers and wants to minimize TOU electricity costs and demand charges

$$U_2(e) = 10 \Big(u_{PM}(e) + u_{DC}(e) \Big) + u_{OU}(e) + 10^{-9} \Big(u_{LF}(e) + u_{ES}(e) \Big)$$

Test Case 2: Results

Test Case 2: Results

Figure: Daily loads of the charging facility for various charging strategies.

Test Case 2: Results

Figure: Daily loads of the charging facility for various charging strategies.

Recap EV Smart Charging

Online optimization framework for workplace EV charging

- Customizable utility functions
- Accounts for infrastructure constraints
- Can be modified based on user data availability/accuracy
- Outperforms FCFS, LLF, EDF in both energy delivery and profit maximization

Stanford Marguerite Shuttle

- 38 BYD Electric Buses
- 23 double port chargers
- 352 unique trips per day
- 1431 miles per day

Minimal Cost Operational Strategy

- Route assignment
- Recharge schedule
- Auxiliary diesel bus usage
- On-site solar sizing
- Operator preferences

Minimal Cost Operational Strategy

- Route assignment
- Recharge schedule
- Auxiliary diesel bus usage
- On-site solar sizing
- Operator preferences

 $\$715/\mathsf{day} \to \$316/\mathsf{day} \to \$92/\mathsf{day}$

$$\begin{split} & \text{Minimize} \sum_{\substack{t \in \mathcal{T} \\ t \in \mathcal{S}}} p(t)V(t) & (1a) \\ & \text{Subject to:} \\ & Z^k(t) + \sum_{i \in \mathcal{S}} X_i^k(t) \leq 1, \quad \forall k \in \mathcal{K}, t \in \mathcal{T} & (1b) \\ & \sum_{k \in \mathcal{K}} X_i^k(t) = 1, \quad \forall i \in \mathcal{S}, t \in [a_i, b_i] & (1c) \\ & X_i^k(t+1) = X_i^k(t), \quad \forall i \in \mathcal{S}, k \in \mathcal{K}, t \in [a_i, b_i-1] & (1d) \\ & \sum_{n \in \mathcal{N}} Y_n^k(t) \geq 1, \quad \forall n \in \mathcal{N}, t \in \mathcal{T} & (1e) \\ & \sum_{n \in \mathcal{N}} Y_n^k(t) = Z^k(t), \quad \forall k \in \mathcal{K}, t \in \mathcal{T} & (1f) \\ & E^k(t) = E^k(t-1) + \sum_{n \in \mathcal{N}} u_n Y_n^k(t) - \sum_{i \in \mathcal{S}} d_i X_i^k(t), & (1g) \\ & \forall k \in \mathcal{K}, t \in \mathcal{T} & (1h) \\ & E_{min}^k \leq E^k(t) \leq E_{max}^k, \quad \forall k \in \mathcal{K}, t \in \mathcal{T} & (1h) \\ & E_{min}^k(t) \in \{0, 1\}, \quad \forall i \in \mathcal{S}, k \in \mathcal{K}, t \in \mathcal{T} & (1j) \\ & Y_n^k(t) \in \{0, 1\}, \quad \forall n \in \mathcal{N}, k \in \mathcal{K}, t \in \mathcal{T} & (1h) \\ & 0 \leq S(t) \leq g(t), \quad \forall t \in \mathcal{T} & (1m) \\ & E^k(0) = e_0^k, \quad \forall k \in \mathcal{K} & (1n) \\ & E^k(T) = e_0^k, \quad \forall k \in \mathcal{K}. & (1o) \end{split}$$

IEEE TTE 2020

IEEE TTE 2020

Fetals	352 trips/day	1431.50 miles/day
Limbol (PM)	10	2.00
f Limited (AM)	10	2.40
(Line	44	4.60
(Espress (PM)	20	1.20
CLimited (PM)	10	1.50
CLinited (AM)	10	2.00
CLine	-44	4.00
CEspress (AM)	12	1.50
Research Park (AMIPM)	24	10.40
Line (Mid Day)	11	4.00
Lisc (AMPM)	56	2.50
OC Line (Mid Day)	11	5.00
OC Line (AMP50	-46	3.00
2 Limited	11	4.00
5 Li M	30	1.00

PESGM 2020

IEEE TSG 2022

IEEE TSG 2022

PESGM 2022, IEEE SmartGridComm 2022

What's Next?

What's Next?

What's Next?

Thank you!

- Mahnoosh Alizadeh
- Committee
- Gustavo Cezar, SLAC National Lab
- UCSB Institute for Energy Efficiency (IEE)
- Smart Infrastructure Systems Lab
- UCSB ECE graduate students

References

- [Tucker, Alizadeh, IEEE TSG 2019] An Online Admission Control Mechanism for EVs at Public Parking Infrastructures
- [Tucker, Moradipari, Alizadeh, IEEE TSG 2020] Constrained Thompson Sampling for Real-Time Electricity Pricing with Grid Reliability Constraints
- [Tucker, Alizadeh, IEEE TSG 2022] An Online Scheduling Algorithm for a Community Energy Storage System
- [Tucker, Cezar, Alizadeh, IEEE PESGM 2022] Real-Time Electric Vehicle Smart Charging at Workplaces: A Real-World Case Study
- [Tucker, Alizadeh, IEEE SGC 2022, *In Progress*] An Online Optimization Framework for EV Smart Charging at Workplaces

Online Optimization Framework

- Rolling horizon optimization
- Future model: certainty equivalence
 - Account for future arrivals
 - Utilize an "average day" model
- Scenario generation/pruning for EVs' departure times
 - Users can input multiple departure times
 - Can be generated from population/personal datasets
- Modify utility functions and constraints
 - Demand charge utility function

Online Optimization Framework

$$\max_{e} \sum_{i} \sum_{n} \frac{1}{C_n} \left[U(e_i, x_{i,n}) \right] + \sum_{j} \left[U(e_j, x_j) \right]$$

subject to:

 $\begin{array}{ll} 0 \leq e_k(t) \leq e_{max}, & \forall k = i, j, \forall t \\ e_i^{\ T} x_{i,n} \leq d_i, & \forall i \\ e_j^{\ T} x_j \geq d_j, & \forall j \\ \sum\limits_{k=i,j} e_k(t) \leq e_{trans}, & \forall t \\ \hat{e}_{inc} \geq \sum\limits_{k=i,j} e_k(t) - \hat{e}_{old}, & \forall t \end{array}$

 $\hat{e}_{inc} \geq 0$
Algorithm 1 REAL-TIME SMART CHARGING

for each day do Update current parking lot state for each 15 minute interval t do if new departure from parking lot then Update parking lot state end if if new arrival to parking lot then Generate/solicit N potential departure times for new arrival Update Parking lot state end if Formulate optimization for time t: for each EV i plugged in at time t do Add EV i to total objective function Add EV i to active constraints end for for each future EV j in daily model $t_{model} > t$ do Add EV *i* to total objective function Add EV i to active constraints end for Solve optimization for time t Store planned energy schedule for each EV i Set each EVSE's output power for the current 15 minute interval Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed) end for end for

Algorithm 1 REAL-TIME SMART CHARGING

```
for each day do
    for each 15 minute interval t do
        if new departure from parking lot then
            Update parking lot state
        end if
        if new arrival to parking lot then
            Generate/solicit N potential departure times for new arrival
            Update Parking lot state
        end if
        Formulate optimization for time t:
        for each EV i plugged in at time t do
            Add EV i to total objective function
            Add EV i to active constraints
        end for
        for each future EV j in daily model t_{model} > t do
            Add EV i to total objective function
            Add EV j to active constraints
        end for
        Solve optimization for time t
        Store planned energy schedule for each EV i
        Set each EVSE's output power for the current 15 minute interval
        Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed)
    end for
end for
```

Algorithm 1 REAL-TIME SMART CHARGING

for each day do Update current parking lot state for each 15 minute interval t do if new departure from parking lot then Update parking lot state end if if new arrival to parking lot then Generate/solicit N potential departure times for new arrival Update Parking lot state end if Formulate optimization for time t: for each EV i plugged in at time t do Add EV i to total objective function Add EV i to active constraints end for for each future EV j in daily model $t_{model} > t$ do Add EV *i* to total objective function Add EV i to active constraints end for Solve optimization for time t Store planned energy schedule for each EV i Set each EVSE's output power for the current 15 minute interval Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed) end for end for

Algorithm 1 REAL-TIME SMART CHARGING

for each day do Update current parking lot state for each 15 minute interval t do if new departure from parking lot then Update parking lot state end if if new arrival to parking lot then Generate/solicit N potential departure times for new arrival Update Parking lot state end if Formulate optimization for time t: for each EV i plugged in at time t do Add EV i to total objective function Add EV i to active constraints end for for each future EV j in daily model $t_{model} > t$ do Add EV *i* to total objective function Add EV i to active constraints end for Solve optimization for time t Store planned energy schedule for each EV i Set each EVSE's output power for the current 15 minute interval Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed) end for end for

Algorithm 1 REAL-TIME SMART CHARGING

for each day do Update current parking lot state for each 15 minute interval t do if new departure from parking lot then Update parking lot state end if if new arrival to parking lot then Generate/solicit N potential departure times for new arrival Update Parking lot state end if Formulate optimization for time t: for each EV i plugged in at time t do Add EV i to total objective function Add EV i to active constraints end for for each future EV j in daily model $t_{model} > t$ do Add EV *i* to total objective function Add EV j to active constraints end for Solve optimization for time t Store planned energy schedule for each EV i Set each EVSE's output power for the current 15 minute interval Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed) end for end for

Algorithm 1 REAL-TIME SMART CHARGING

for each day do Update current parking lot state for each 15 minute interval t do if new departure from parking lot then Update parking lot state end if if new arrival to parking lot then Generate/solicit N potential departure times for new arrival Update Parking lot state end if Formulate optimization for time t: for each EV *i* plugged in at time *t* do Add EV i to total objective function Add EV i to active constraints end for for each future EV j in daily model $t_{model} > t$ do Add EV *i* to total objective function Add EV j to active constraints end for Solve optimization for time t Store planned energy schedule for each EV i Set each EVSE's output power for the current 15 minute interval Update peak load \hat{e}_{old} for demand charge calculation (if a new peak load is observed) end for end for