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Global Energy Transition

Two Major Components

By 2040, electric cars could outsell gasoline-powered cars
M Electric W Hyorid Gas
Transportation Electrification Grid Modernization
® |nfrastructure management ® New flexible loads
e Effects on the grid ® |ncreased renewables

Both can benefit from optimization and learning mechanisms
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[Tucker, Alizadeh, IEEE TSG, '19] An Online Admission Control

Mechanism for EVs at Public Parking Infrastructures
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Recap - Candidacy Part 2

Post price pr

<< Electricity
Observe demand behavior D (p;) Retailer

Operational constraints of the distribution grid

i “ T

Objective: minimize expected cost E[f (D, (p), V)]
Subject to: operational constraints of the grid

[Tucker, Moradipari, Alizadeh, IEEE TSG, '20] Constrained
Thompson Sampling for Real-Time Electricity Pricing with Grid
Reliability Constraints
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Part 1
An Online Scheduling Algorithm for a Community Energy Storage
System
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Motivation

Individual Consumers/Prosumers

Cons:

Pros:

.. . [ i
e Lower electricity bills Large upfront investment

® Low utilization (single-family

® Reduce CO2 emissions
home)

e Utilize larger portion of

self-generated energy ® Long period for ROI to

breakeven
What can be done to lower costs and increase utilization?
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Energy Communities

® Split investment costs

® Diversify loads

® Utilize excess renewable generation within the community
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Energy Communities

What are the main requirements for an energy community?

¢ Connected members (grid and communication)
® Distributed renewable generation

e Community energy storage system (CES)

® CES scheduling strategy
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< - - >Information Flow

CES Manager

CES Resources

<> Power Flow
0 &> % Limited resources:
\y, . S ® Energy capacity, up to E kWh
Y y ® Charging power, up to P, kW
i ® Discharging power, up to Py kW

i

Buildings & Homes
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CES Objectives

< - - >Information Flow <> Power Flow
Power Grid
“”‘n“ ces N CES Manager’s Objectives:
y y ® Maximize utility for community
el 3 ® Recover investment cost

® Handle unknown demand, privacy

R . _
&_k ;L,JL concerns, real-time operation

Buildings & Homes

Online pricing mechanisms for CES reservations
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Related CES Scheduling Works

® [Tushar, et al., '16],[Chen, et al., '17],[Liu, et al., "17]
® Capacity reservation must be constant for long-term
reservations

® [Zhong, et al., '20]
® Scheduling mechanism can violate CES constraints
® [Zhao, et al., '19]

® Prices for ‘virtual’ portions of the CES, but prices remain
constant for the whole horizon
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Related CES Scheduling Works

® [Tushar, et al., '16],[Chen, et al., '17],[Liu, et al., "17]
® Capacity reservation must be constant for long-term
reservations

® [Zhong, et al., '20]
® Scheduling mechanism can violate CES constraints
® [Zhao, et al., '19]

® Prices for ‘virtual’ portions of the CES, but prices remain
constant for the whole horizon

Our Contributions:
e Allow users to modify usage easily
e Uphold CES constraints

® |ncentivize diverse usage patterns
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Online Solution’'s Goals

Design online scheduling strategy for community energy
storage systems with shared charging, discharging, and
capacity resources to maximize social welfare

Make irrevocable scheduling decisions in an online fashion
Post resource prices, users select to maximize own utility
Payment at the time of reservation

Handle adversarial request sequences (due to the
unpredictable generation and demand)

Incentivize diverse charging/discharging schedules

Provide performance guarantees
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System Description - Flow Chart
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User Characteristics

e Users want to store energy to be used at a later time (from
cheap TOU rates or from excess solar generation)

® Potential schedules that benefit user n: s € S,
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User Characteristics

Users want to store energy to be used at a later time (from
cheap TOU rates or from excess solar generation)

Potential schedules that benefit user n: s € S,

t,: Start time

tt: End time

insc(t): Charge/discharge schedule (4 charging, - discharging)
inse(t): Energy capacity reservation

Vns: Valuation
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Valuations

Example valuation from free solar generation:
(Value of replacing grid energy with free solar)

Vps = — Z pgrid(t)insc(t)|i"sc(t)<0
t
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Valuations

Example valuation from free solar generation:
(Value of replacing grid energy with free solar)

Vps = — Z pgrid(t)insc(t)|i"sc(t)<0
t

Example valuation from TOU energy arbitrage:
(Value of buying cheap grid energy for later use)

Vps = — Z pgrjd(t)inSC(t)’l'nsc(t)<0
t

= 3 Pia(Binse(D)le(ry0
t
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CES Power
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Example

User A wants
to charge the
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User A wants
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Proposed Solution: Online Pricing/Remuneration Heuristic

® Determine the prices for the shared resources as requests arrive

® Proposed Solution: the prices pe(t), pc(t), and py(t) have
heuristic updating functions

® Example payment for schedule s:

st = [inse(£)Pe(t) + nsc(£)Pe() + insc()pa(®)]

T

® We are able to provide performance guarantees for pricing
functions of the following form:

ye(t)

= (%) () F. wwebAl
p0= () (B el parg
pal) = () (52) L melPukd
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Example

Max Charging Power
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to charge the
CES CES Power

T I T
6:00am 12:00pm 6:00pm

Max Discharging Power

User A pays:
P.(12 : 00pm)

32/105



Example

User A wants
to charge the
CES

N

T I T
6:00am 12:00pm 6:00pm

User A pays:
P(12 : 00pm) - P4(12 : 00pm)

Max Charging Power

CES Power

Max Discharging Power
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Example

Max Charging Power

User A wants

to charge the
CES CES Power

User A wants
to discharge
from the CES
| | |
T I
6:00am 12:00pm 6
Time

Max Discharging Power

User A pays:
Pc(12 : 00pm) - P4(12 : 00pm) 4+ P4(6 : 00pm)
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Example

Max Charging Power

User A wants

to charge the
CES CES Power
User A wants
to discharge

=

from the CES
I
12:00pm 6

Max Dis ing Power

User A pays:
Pc(12 : 00pm) - Py4(12

: 00pm) + P4(6 : 00pm) - P.(6 : 00pm)
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Example

Max Charging Power

CES Power

Max Discharging Power

to charge the
Ll L] .
Time 6:00am 12:00pm :00pm
User A pays:
Pc(12: 00pm) - P4(12 : 00pm) + Py4(6 : 00pm) - P.(6 : 00pm)
User B pays:
P.(6 : 00am)
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Example

Max Charging Power

User B wants
to charge the
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Example
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System Description - Flow Chart
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System Description - Flow Chart
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System Description - Flow Chart

Buildings & Homes
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Offline Formulation

max E VinsXns

N,Sn

subject to:
xns € {0, 1}, VYneN,se S,
Zx,,s <1, VYneN
Sn
ve(t) < E, Ve T
ye(t) < P, VieT
ye(t) > —Pg, VteT
where:

Z /nse an

NS,
)/c(t) /nsc(t)xns

N,Sn 51/105



Performance Guarantee: Competitive Ratio

® Competitive ratio:

Optimal Offline Solution's Social Welfare
Worst Case[Online Mechanism's Social Welfare] —
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Performance Guarantee: Competitive Ratio

® Competitive ratio:

Optimal Offline Solution's Social Welfare
Worst Case[Online Mechanism's Social Welfare] —

® An online mechanism is “a-competitive” when:

Optimal Offline Solution's Social Welfare
~ Worst Case[Online Mechanism's Social Welfare] —
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Proof Outline

® Ensure that the “social welfare generated” by each CES
reservation is above a “threshold value”
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Proof Outline

® Ensure that the “social welfare generated” by each CES
reservation is above a “threshold value”

® Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:
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(p(t) — F(y(t)))dy(t) > a(lt)f* (p(£))dp(t)
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Proof Outline

® Ensure that the “social welfare generated” by each CES
reservation is above a “threshold value”

® Show the online marginal pricing functions, fenchel

conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:

a(lt)f*’(p(t))dp(t)
“Threshold value”

(p(t) — '(y()))dy(t)

“Social welfare generated”

v

Vv
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Proof Outline

® Ensure that the “social welfare generated” by each CES
reservation is above a “threshold value”

® Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:

(p(t) — F(y(t)))dy(t) > a(lt)f*’(p(t))dp(t)

“Social welfare generated” > “Threshold value”

¢ Resulting competitive ratio is the maximum «(t) over all
resources and time.
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Proof Outline

The Generalized Differential Allocation-Payment Relationship for
the payment and remuneration of two coupled resources (resources
a and b) for a given parameter a > 1 is:

[pa(t) — £ (va(t))] dya(t) + [pb(t) — fo(¥s(t))]dys(t)
£ (pa(£))dpa(t) + 5 (po(£))dpu(t)]

54/105



Proof Outline

The Generalized Differential Allocation-Payment Relationship for
the payment and remuneration of two coupled resources (resources
a and b) for a given parameter a > 1 is:

[Pa(t) — £3(ya(t))]dya(t) + [po(t) — fo(ys(t))]dys(t)
o) 5 (pal©)dpa(t) + 5 (o(6))dpo()

Competitive Ratio
The CES schedules generated by our pricing functions are
a-competitive in welfare over N usage requests:

()
a=In—""
Lc,d
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Valuation (3)

Valuation Sequence

sssssssssss

Example Input Sequences
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Valuation (3)

Social Welfare ($)

Valuation Sequence

/

User Sequence

Example

Input Sequences
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Example Input Sequences

Valuation Sequence

Valuation (3)

/

Social Welfare ($)
)

User Sequence
Competitive Rati

Competitive Ratio

UpperBound  Actual
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Example Input Sequences

Valuation (3)

2

Social Welfare ($)
8 8 & 8

Competitive Ratio

Valuation Sequence Valuation Sequence
10
s
§6
S
2
o
2345678091 1234 5678910
User User
Total Social Welfare Total Social Welfare
&
50| | To Soce Wetore (Opimat
= Minimum Guaranteed Social Wefare
[
s
)
/ 5
/ 5
Y &
10
4 6 3 10 2 4 6 10
User Sequence User Sequence
Competitive Ratios Competitive Ratios
5
5
2
3
23
8
3
4 »
o
UpperBound  Actual UpperBound  Actual
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Example Input Sequences

Valuation (3)

2

Social Welfare ($)
8 8 & 8

Competitive Ratio

Valuation Sequence Valuation Sequence Valuation Sequence
0 0
s 8
56 56
g B
2 2
3 3
23456780910 123450678590 1234567686091
User User User
Total Social Welfare Total Social Welfare @ Total Social Welfare
60
5 Toul Sodl Welre (Feursic) 5 Tolal Socal Welare (Heursti)
50 |—— Toal Sockal Welfare (Optima) 50 [~ Tota Sockl Wolre (Optimal)
= = Wetao
2 [
s e
i N
A 3 7 3
Vi g2 820
/ & 3
0 0
/
o
4 6 8 10 2 4 6 1 2 10
User Sequence User Sequence
Competitive Ratios R Competitive Ratios N
5 s
° °
g4 2
23 £s
£ £
3 3
1 E 1
3 3
Upper Bound Actual Upper Bound Actual Upper Bound Actual
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Example Input Sequences

Valuation (3)

2

Social Welfare ($)
8 8 & 8

Competitive Ratio

Valuation Sequence Valuation Sequence Valuation Sequence Valuation Sequence
10 0 10
s 8 s
§6 56 56
. S S
2 2 2
0 o 0
23456780910 122345678590 12345673891 1234506780910
User User User User
Total Social Welfare Total Social Welfare w Total Social Welfare Total Social Welfare
&
= Tot Socl Welars (Feurte) 5 Total Socll Wellre (Feurstic] = Tota Socl Welars (Feurste)
50 |- |—<—Total Socs Wetare (ptmal 50 || Tolal Soca Wolare (Opimal) 50 |- |—<— Total Socl Wetare (Optmai)
_ _ Wei _ o
[ @ 5
Lw sw 2, o
g N )
k| 74 g k-
// S 220 g2
/ 8 @ 8
0 10 10 S S
/
o
4 3 s 10 2 4 ) 1 2 4 5 s 0
User Sequence User Sequence User Sequence
Competitive Ratios Competitive Ratios . Competitive Ratios
6 3
5 s 5
e 2 e
s 5 3
g4 & g
=) £s £
§ g g
£
g2 52 2
3 S 3
' E ' '
0 o 0
UpperBound Actal UpperBound  Actual UpperBound  Actual UpperBound  Actual
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Electricity:Facilty [KW](Hourly)

Los Angeles Case Study
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Los Angeles Case Study

N ads, Jan 1 - Jan 10, TMY3

250

T FullServicaRestaurant

o 50 100 150 20 250
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Los Angeles Case Study
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Electricity:Facilty [KW](Hourly)

Rate ($/kn]

Los Angeles Case Study

A ads, Jan 1 - Jan 10, TMY3 Loads wi & Shared Battery
250 —2) o)
TFulSeniceResmirant
——2MedunOfics
3 MisisoApartmont
——— 4 PrimarySchool
6 Smatbol = =
g i
z z
E EN. T FulSenicaRstarant
g - g - —— 2 Medumotce
g g 3 MidtseApariment
[} w —— & primaryScho
o 00 imary
6 Smalbita
——7 smato
150 & StancaloneRotsl
o Suptal
10 Warchouse
0 200
o E) 00 50 20 20 o E) 100 150 20 20 o T 200 250
1 Hour Intervals 1 Hour Intervals 1 Hour Intervals
B) Normalized Solar Generation LA Jan 1-Jan 10 E) Total Load Comparison (withiwithout Shared Battery)
&0
600
€
3
h % 400
o Z
o 1 B 20 20 §
1 Hour Intervals = 20
C) Electricity Rates Jan 1-Jan 10 £
018 <
K
R
014 ]
012 200
01
o 400

50 100 150 20
1 Hour Intervals

50 100 150 200 20
1 Hour Intervals

65 /105



Los Angeles Case Study
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Recap Part 1

Online scheduling strategy for community energy storage systems
via heuristic pricing functions in order to maximize social welfare:
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Recap Part 1

Online scheduling strategy for community energy storage systems
via heuristic pricing functions in order to maximize social welfare:

1. Shared resource manager that optimizes CES usage
2. Promotes diverse charging/discharging patterns

3. Robust to adversarially chosen request sequences and is
a-competitive in social welfare to the optimal offline solution
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Part 2

Real-World Implementations
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Projects
Collaboration w/ SLAC, Stanford, UCSB, Google, CEC
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Projects
Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

Benefits of coordinated EV
charging at workplaces

SLAC & Google campuses
PESGM 2022, SGC 2022
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Projects
Collaboration w/ SLAC, Stanford, UCSB, Google, CEC

® Benefits of coordinated EV ) Opt|m|ze Charge and routes
charging at workplaces of an EV bus fleet

® SLAC & Google campuses e Stanford Marguerite Shuttle

e PESGM 2022, SGC 2022 e PESGM 2020

69 /105



EV Smart Charging at Large-Scale Facilities
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e 2012: 120,000 EVs sold

2022 Global EV Outlook, International Energy Agency (IEA)
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EV Smart Charging at Large-Scale Facilities

=

e 2012: 120,000 EVs sold
e 2021: 120,000 EVs sold per week
Smart charging is increasingly critical for large-scale facilities

(e.g., workplaces, apartment complexes, shopping centers, airports,
fleet depots, etc.)

2022 Global EV Outlook, International Energy Agency (IEA)
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SLAC & Google Datasets

Collaboration with the GISMO group at SLAC, have access to a
large historical EV charging dataset:

® Workplaces throughout the Bay Area
® Most sessions exhibit typical workplace behavior
® 15-minute interval data for over 10,000 sessions

e Start times, end times, 15 minute avg. power delivered, total
energy delivered, etc.

Opportunity to showcase the benefits of various smart
charging strategies
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Smart Charging Objectives

EV owner utility

uou(e) =

2ilog(X o, ei(t) +1)

Quick charge

-

acle) =

S Y et

Profit

Up[\/](e)

a3 X ai(e) = e p(e) (X ei(e) + 2(1))

Demand charges

upc(e) = —p - max; (Z, ei(t) + Z(t))

3 (reie) + 2(1)

Load flattening | u;p(e)
Equal sharing ugs(e) = —>_;; ei(t)?
Energy demand | ugp(e) = -, <| >ocei(t) — d,]>
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Offline Objective + Constraints

max U(e) = maxz wr us(e)
f=1
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Offline Objective + Constraints

maxU = max g wrur(e

subject to:

0 < ei(t) < emax,
ei(t) =0,

Z ei(t) < dj,

t

Z ei(t) < €trans,

i

Vt, i
vt ¢ [t7, ]
Vi

YVt
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Implementation Challenges

Real-world systems with human users

e QOperate in real-time without knowledge of future

® Adapt as more information is revealed

® |nfrastructure constraints coupling all charging profiles

® Limited information from the EV

® |naccurate information from the EV

® 18.6% percentage error in user predicted departure times!

1[Lee, Sharma, Low, '21] Research Tools for Smart EV Charging
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Test Case 1: User Utility Maximization with TOU Rates

® Facility manager — maximize user utility under TOU
electricity rates

® A large company campus who wants to provide free and
effective charging for employees

Us(e) = 15uou(e) + upm(e) + 10—9(ULF(e) + uEs(e)>
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Energy Delivered (KWh)
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SIETRT

160 KW

Test Case 1: Results

Total Energy Delivered per Day (KWh)

140 KW 120 KW
Transformer Capacity

100 KW

W unctrl total energy

m opt total energy

® mpcO total energy
mpc5 total energy

W mpc10 total energy

W mpc20 total energy

WLLF

W EDF

Figure: Total energy delivered for the various cases including
Least-Laxity-First and Earliest-Deadline-First (both with perfect
departure time knowledge) with varying transformer capacities.
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Test Case 1: Results

Cost per KWh from TOU Rates ($)

lnkalakn

140 KW 120 KW

Transformer Capacity

100 KW

W unctrl cost/kwh

m opt cost/kwh

B mpcO cost/kwh
mpc5 cost/kwh

® mpc10 cost/kwh

B mpc20 cost/kwh

Figure: Cost per KWh from TOU rates for the uncontrolled, offline
optimal, and 4 MPC test cases
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Test Case 2: Profit Maximization with TOU Rates and
Demand Charges

® Facility manager — maximize profit while delivering adequate
energy to each customer

® For-profit third-party parking structure equipped with chargers
and wants to minimize TOU electricity costs and demand
charges

Us(e) = 10<uPM(e) + uDC(e)> + uou(e) +107° (uLF(e) + uEs(e)>
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Total Revenue ($)

Electricity Cost per KWh ($)
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Test Case 2: Results
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™ EDF demand charge
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Test Case 2: Results

June 17th, 2019 Daily Load Comparison
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140
120
100 | — Uncontrolied Load (W)
— LLF Load (Kw)
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601 e Coupling Power Constraint
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Time of Day (3hr increments)

Figure: Daily loads of the charging facility for various charging strategies.
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June 17th, 2019 Daily Load Comparison
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Figure: Daily loads of the charging facility for various charging strategies.
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Recap EV Smart Charging

Online optimization framework for workplace EV charging
o Customizable utility functions
® Accounts for infrastructure constraints
® Can be modified based on user data availability/accuracy

® Qutperforms FCFS, LLF, EDF in both energy delivery and
profit maximization
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Stanford Marguerite Shuttle

38 BYD Electric Buses
23 double port chargers

352 unique trips per day

1431 miles per day
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Minimal Cost Operational Strategy

Route assignment
Recharge schedule
Auxiliary diesel bus usage
On-site solar sizing

Operator preferences
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Minimal Cost Operational Strategy

Minimize % p(t)V(1) (1a)
teT
Subject to:
M +Y Xk <1, vkeKteT (1b)
3 .\'}(4; =1, i€ 8.t € [ai, b (lc)
. kel
® Route assignment XE(t+1) = XM0), Vi€ 8,k € K.t € [ai,bi—1] (1d)
yE() <1, VneNteT (1e)
® Recharge schedule X
Auxili di b 3 vk =z, vkeK,teT an
° xihary di ned
u ary diese us usage Ef) = BXt - 1)+ ¥ waYi(0) - Y dixF(2), (1g)
® On-site solar sizing M kexier
® Operator preferences Y Y it = V(O +S@), weT an
neN kek
EX i < EM(t) < B, VkeK,teT
(1)
$715/day — $316/day — $92/day xkt) e {01}, VieSkeKteT .
(1j)
Vi) € {0,1}, VneN ke teT
(1K)
Z5(t) € {0,1}, ke K, teT (1
0 < S(t) < glt), vteT (1m)
E*(0) = ef, vk e K (In)
E¥(T) = ef, vk e K. (lo)
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Recap - Online Optimization and Learning for CHPS
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Recap - Online Optimization and Learning for CHPS

3) Facility Power
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Recap - Online Optimization and Learning for CHPS
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Allerton 2018, ACC 2019, IEEE TSG 2019
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Recap - Online Optimization and Learning for CHPS
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C ITSC 2019
Allerton 2018, ACC 2019, IEEE TSG 2019

|EEE TTE 2020
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Recap - Online Optimization and Learning for CHPS

3) Facility Power Region 4
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Allerton 2018, ACC 2019, IEEE TSG 2019
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Recap - Online Optimization and Learning for CHPS
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Recap - Online Optimization and Learning for CHPS
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Recap - Online Optimization and Learning for CHPS
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What's Next?
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Thank you!

Mahnoosh Alizadeh

Committee

Gustavo Cezar, SLAC National Lab

UCSB Institute for Energy Efficiency (IEE)
Smart Infrastructure Systems Lab

UCSB ECE graduate students
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Online Optimization Framework

Rolling horizon optimization
Future model: certainty equivalence

® Account for future arrivals
® Utilize an “average day” model

Scenario generation/pruning for EVs' departure times

® Users can input multiple departure times
® Can be generated from population/personal datasets

Modify utility functions and constraints
® Demand charge utility function
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Online Optimization Framework

maxzz [ &, Xi,n ] +Z [U(eﬁxj)}

subject to:
0 < ex(t) < emax;
e,'TXi7n <d,
Txj > dj,
Z ek(t) < €trans;

k=ij

€inc > § ex(t) — éoid,
k=ij

é\inc Z 0

Jj
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Real-Time Smart Charging Algorithm (RTSCA)

Algorithm 1 REAL-TIME SMART CHARGING

for each day do
Update current parking lot state

for

each 15 minute interval t do
if new departure from parking lot then
Update parking lot state
end if
if new arrival to parking lot then
Generate/solicit N potential departure times for new arrival
Update Parking lot state
end if
Formulate optimization for time t:
for each EV i plugged in at time t do
Add EV i to total objective function
Add EV i to active constraints
end for
for each future EV j in daily model t,,q4e > t do
Add EV j to total objective function
Add EV j to active constraints
end for
Solve optimization for time t
Store planned energy schedule for each EV i
Set each EVSE's output power for the current 15 minute interval

Update peak load &,y for demand charge calculation (if a new peak load is observed)

end for

end for
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for each day do
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Real-Time Smart Charging Algorithm (RTSCA)

Algorithm 1 REAL-TIME SMART CHARGING

for each day do
Update current parking lot state

for

each 15 minute interval t do
if new departure from parking lot then
Update parking lot state
end if
if new arrival to parking lot then
Generate/solicit N potential departure times for new arrival
Update Parking lot state
end if
Formulate optimization for time t:
for each EV i plugged in at time t do
Add EV i to total objective function
Add EV i to active constraints
end for
for each future EV j in daily model t,,q4e > t do
Add EV j to total objective function
Add EV j to active constraints
end for
Solve optimization for time t
Store planned energy schedule for each EV /
Set each EVSE's output power for the current 15 minute interval

Update peak load &,y for demand charge calculation (if a new peak load is observed)

end for

end for
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