
  

 

Abstract— Energy security and the aging grid infrastructure in 

the United States are two important subjects at the crossroads 

between politics and technology. One proposed solution to these 

two issues revolves around the concept of an islanded 

microgrid. Microgrids are becoming increasingly popular, 

combining multiple energy generation and storage systems to 

diversify and secure their private energy portfolios. The work 

presented in this paper is the application of jump linear 

quadratic (JLQ) control to the energy management of an 

islanded microgrid operating with a solar generation, fuel cell, 

and battery energy storage system. A continuous finite state 

Markov chain is used to model the intermittent generation of 

the solar array. The microgrid’s energy management model is 

formulated, stochastic optimal feedback control is obtained, 

and results from an example illustrate the validity of the 

proposed approach. 

I. INTRODUCTION 

With prices of consumer photovoltaic (PV) generation 

systems decreasing, the number of small-scale electricity 

generating households is growing steadily. Specifically, in 

California, where the weather is advantageous for solar 

generation, average citizens are installing PV generation 

systems at an impressive rate [1]. While this is a positive 

development that will help migrate energy production away 

from centralized fossil fuel plants by increasing the 

customers’ control of their own electricity generation, many 

current household generation systems are not able to take 

full advantage of the electricity they generate. Households 

solely equipped with PV systems can only generate 

electricity when there is sun (daytime) and are forced to 

purchase electricity from the grid otherwise. Additionally, 

excess generated energy has to be sent back into the grid, 

instead of being stored for later use, which brings another 

layer of complexity to managing grid stability.  

 

To circumvent this set of problems, several energy 

storage systems have emerged within the market that give 

households the ability to store self-generated energy for later 

use. These battery energy storage systems (BESS) facilitate 

several beneficial functions such as solar self-consumption, 

time of use load shifting, backup power, and off-the-grid 

use. With the increasingly common partnership of PV 

generation and battery energy storage systems, a household 

with both can be treated as its own microgrid system, 

capable of self- generation, storage, and only using a 

connection to the existing utility network when absolutely 
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necessary. The major component of microgrid energy 

management systems is advanced control strategies. Hence, 

intense research is being conducted on optimal energy 

management of microgrids. In this paper, we name a few 

recent publications pertinent to our work. Wu et al. [2] 

focuses on stochastic energy management of a home with 

plug-in electric vehicle energy storage and PV. This work 

seeks to minimize consumer energy charges. Similarly, 

Beloni et al. [3] focuses on multi-load systems utilizing 

shared resources with the goal of lowering overall energy 

cost. Furthermore, Dong et al. [4] considers an optimal 

stochastic control for home energy systems with solar and 

energy storage where the demand is subject to Brownian 

motions. In [5], the microgrid energy management problem 

is formulated as a two-stage stochastic programming 

considering uncertainty. In a more recent work [6], a 

Markov jump process is used to model the stochastic 

changes of distributed energy storage systems.  

 

Proposed control strategies assume the microgrid has 

access to the public distribution grid to satisfy load demand 

when necessary. The challenge we address in this work 

would be to eliminate this connection which will help to 

reduce the burden on the power grid. By eliminating this 

connection, we need to utilize a proxy distributed generation 

source. This will add an additional control input to the 

system. The control strategy proposed focuses on small off-

the-grid systems; more specifically, residential homes. We 

will call these single home microgrids, nanogrids (nGrids). 

Nanogrids are a new concept [7] and are defined as 

micorgrids under 5 kW. In this work, the particularity of 

nGrids is that they have no connection to the electric grid. 

The assumption is that every nGrid will have a Renewable 

Energy Source (RES) such as rooftop solar panels, storage, 

and a sustainable clean energy generator such as a fuel cell. 

We made this decision not out of convenience, but to further 

support the reduction of fossil fuel consumption. This 

assumption also brings a few advantages. The control 

strategy: 

 does not need to handle multiple loads and control 

competition for a shared resource, 

 relinquishes power generation and distribution 

responsibilities from the public grid, 

 provides the consumer complete control.  

Solar energy used as a RES is a natural choice for residential 

homes. The price of solar panels is continuously decreasing, 

resulting in their increased proliferation. One of the 

characteristic features of solar energy generation is the 

impossibility of predicting the exact time of occurrence, the 

duration, and the quality of the energy provided. Hence, it is 

not optimum to design a control strategy using a 

deterministic model. In this work, we make the assumption, 
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with backing of real data, that solar energy delivered could 

be modeled as a continuous Markov chain with three states. 

Consequently, it has become apparent to us that an 

appropriate framework for capturing and analyzing energy 

management problems of a nGrid is to utilize random jump 

dynamic system theory [8]. In the present work, we propose 

a control strategy for a nGrid energy management system 

where the average household can operate autonomously 

from the main grid with current technologies available in the 

market. Furthermore, contrary to other proposed control 

strategies [2-6], the one designed here is in continuous time 

where analytical solutions may be obtained. 

This paper is organized as follows. In section II, a system 

architecture as well as specifics for each component are 

described. In Section III, jump linear quadratic control is 

introduced and applied to the proposed nGrid. In section IV, 

an example is presented with simulated results showing the 

effectiveness of the proposed strategy. In the final section, 

conclusions and directions for future research are presented. 

II. SYSTEM DESCRIPTION 

A. Nanogrid Architecture 

The microgrid system we are proposing is represented in 

Figure 1. The system is equipped with a photovoltaic array 

for generation during the daytime, a hydrogen fuel cell for 

baseline energy generation, and a battery energy storage 

system acting as a buffer to smooth intermittent generation 

and to optimize the energy generation/usage balance at 

night. Note that there is no connection to the standard utility 

power distribution network. This is an islanded microgrid 

that must generate energy to meet the load’s demand. As 

mentioned in the introduction we call this type of microgrid 

a nGrid. 

 

Fig. 1.  nGrid architecture with battery, fuel cell, solar, and load. 

 

The primary goal of the system presented here is to 

manage the energy demand of a single home without being 

connected to the grid. This is done by balancing the power 

generated by the PV array, fuel cell, and battery with the 

power required by the load 𝑃𝑙𝑜𝑎𝑑(𝑡) as: 

𝑃𝑙𝑜𝑎𝑑(𝑡) =  𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) + 𝑃𝐹𝐶(𝑡) + 𝑃𝑏𝑎𝑡𝑡.(𝑡).    (1) 

𝑃𝑙𝑜𝑎𝑑(𝑡) follows a preassigned trajectory described in the 

next section. Power generated by the PV array, 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡), 

follows a stochastic process that varies due to cloud 

coverage as well as time of day. The fuel cell’s generated 

power, 𝑃𝐹𝐶(𝑡), is limited to constant values depending on 

the generation capabilities of the specified fuel cell. Lastly, 

the battery 𝑃𝑏𝑎𝑡𝑡.(𝑡) can inject power into the system, as well 

as absorb power when needed. In this architecture, 𝑃𝑙𝑜𝑎𝑑(𝑡) 
is the system set point, 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) is an uncontrollable 

stochastic input modeled by Markov chain, 𝑃𝑏𝑎𝑡𝑡.(𝑡) and 

𝑃𝐹𝐶(𝑡) are control inputs.  

The PV array should be sized in a way that is proportional 

to the daytime load of the house, allowing full load 

satisfaction during sunny weather with the excess energy 

being sent to the battery. Likewise, it is desired for the fuel 

cell to act as a baseline generator and produce a constant 

amount of energy without the need to cycle between on and 

off states frequently. As stated earlier, the battery will act as 

a buffer which will accommodate use of stored solar energy 

when the PV array is not producing energy. The load is 

modeled after an average house in the U.S. with additive 

noise for slight fluctuations in energy demand. The 

following assumptions are made throughout this study: 

 The system has full information on the state of the 

system including instantaneous power flow, maximum 

and minimum generation levels, as well as maximum 

and minimum battery levels. This would be 

implemented with a battery State of Charge (SoC) 

tracker combined with voltage, current, or phasor 

monitoring devices. 

 Reactive power is not taken into account. It is assumed 

that the controllers/inverters on the PV array, battery, 

and fuel cell regulate voltage and the phase angle. Only 

active power is considered. 

 The operation of the fuel cell is simplified. The source 

of hydrogen and oxygen fuel is not specified and no 

energy is used for electrolysis, compression, or 

generation. 

B. Load Model 

The load in the nGrid is modeled after an average house in 

the United States. The load consumption model comes from 

a National Renewable Energy Laboratory (NREL) System 

Advisor Model (SAM) dataset available online [9]. The goal 

of the nGrid energy management controller is to match this 

load through solar generation, fuel cell generation, and 

battery discharge. 

C. Solar Generation Model 

Solar power is becoming a highly desirable form of 

generation due to its passive generation profile and 

decreasing panel costs. However, solar generation possesses 

an intrinsic shortcoming which stems from its intermittent 

nature. PV generation requires sunny weather for max 

efficiency, and generation is severely obstructed by cloud 

coverage. To model this stochastic generation, a continuous 

Markov chain was used to represent cloud coverage patterns 

similar to the approach taken in [10]. As shown in Figure 2, 

cloud coverage falls into one of three categories during the 

day: sunny, cloudy, and overcast. We decided on only three 
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states during the day for simplicity. Obviously, at night, 

there is no solar generation. Hence, the power generated by 

the PV array 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) is presented by Eq. (2), where 

𝑃𝑠(𝑟(𝑡)) takes constant power values that are related to the 

number of panels, efficiency, and load requirements. There 

is a deterministic switch to 𝑃𝑠𝑜𝑙𝑎𝑟
𝑛𝑖𝑔ℎ𝑡(𝑡) = 0 during night. 

𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) =

{
 
 

 
 
𝑃𝑠𝑜𝑙𝑎𝑟
𝑑𝑎𝑦 (𝑡) = 𝑃𝑠(𝑟(𝑡)) = {

𝑟(𝑡) = 1        (sunny)

𝑟(𝑡) = 2       (cloudy)

 𝑟(𝑡) = 3    (overcast)

,

𝑃𝑠𝑜𝑙𝑎𝑟
𝑛𝑖𝑔ℎ𝑡(𝑡) = 0

  (2)  

The term, 𝑟(𝑡) denotes the mode of the Markov chain 

corresponding to the cloud coverage during the day. 

 

Fig. 2.  Weather diagram with a Markov chain representing cloud coverage 
during daytime. 

Therefore, r(t) evolves according to a continuous time 

Markov chain taking values in a finite set 𝑆 = {1,2,3}, with 

transition probability matrix 𝑃 = {𝑝𝑖𝑗} given by: 

𝑝𝑖𝑗 = 𝑃𝑟𝑜𝑏(𝑟(𝑡 + ∆) = 𝑗|𝑟(𝑡) = 𝑖) = 𝜋𝑖𝑗 + 𝑜(Δ)      if 𝑖 ≠ 𝑗                

= 1 +  𝜋𝑖𝑖Δ + 𝑜(Δ)       if 𝑖 = 𝑗 

with lim∆→0
0(∆)

∆
= 0. Where ∆> 0, 𝜋𝑖𝑗  is the (non-negative) 

transition rate from i to j, 𝑖 ≠ 𝑗 and  

𝜋𝑖 ≜ −𝜋𝑖𝑖 ≜ ∑ 𝜋𝑖𝑗
3
𝑗=1,𝑗≠𝑖                 (3) 

with the matrix of the transition rates [8]:  

Π = (𝜋𝑖𝑗);  𝑖, 𝑗 = 1,2,3. 

Data for the cloud coverage transition probability matrix 

was gathered from San Jose International Airport’s routine 

meteorological weather reports [10], also known as 

METAR. METAR data is collected at all major airports and 

government buildings in the United States and specifies 

temperature, precipitation, as well as cloud coverage. For 

our purposes, we were able to quantize the hourly cloud 

coverage from 2016 data into three levels: sunny, cloudy, 

and overcast. The Markov jump transition rate matrix 

calculated from the METAR data is below: 

         Π = [
−0.197 0.164 0.033
0.085 −0.179 0.094
0.010 0.138 −0.148

]                    (4) 

This is an adequate approximation. It is obvious that the 

probability to move from sunny to cloudy is higher than 

from sunny to rainy and vice versa. Furthermore, 2016 was a 

relatively rainy year for Silicon Valley, hence the 

magnitudes of the main diagonal are larger compared to the 

off-diagonal elements in the transition matrix. The cloud 

coverage system has a strong tendency to remain in one state 

for long periods of time.  

D. Battery Energy Storage 

To supplement the intermittent generation from the PV 

array, a battery energy storage system is employed alongside 

a baseline fuel cell generator. The fuel cell is used to provide 

energy to satisfy a portion of the load that the solar and 

battery cannot meet. The battery essentially acts as a buffer, 

storing excess solar and fuel cell energy for later use. The 

effectiveness of this fuel cell and battery combination has 

been demonstrated in [12]. The important specifications of 

the battery include energy capacity (more specifically SoC), 

charge/discharge powers, life cycle, as well as safe operating 

temperatures. SoC of a battery is its available capacity 

expressed as a percentage of its rated capacity. As it is not 

desired to deplete or overcharge the battery, the SoC of the 

battery should be kept within proper limits. Usually, SoC 

cannot be measured directly, but it can be estimated from 

direct measurement of voltage and current. Here, we make 

the assumption that energy stored in the battery Eb(t) and the 

charge power Pb(t) can be used to provide equivalent 

information on SoC. The battery has energy limits, 𝐸𝑏 ≤

𝐸𝑏(𝑡) ≤ 𝐸𝑏, alongside charging and discharging limits, 

0 ≤ 𝑃𝑏𝑎𝑡𝑡
𝑐ℎ. (𝑡) ≤ 𝑃𝑏

𝑐ℎ.
, 0 ≤ 𝑃𝑏𝑎𝑡𝑡

𝑑𝑖𝑠. (𝑡) ≤ 𝑃𝑏
𝑑𝑖𝑠.

, where 

𝑃𝑏
𝑐ℎ.

 and 𝑃𝑏
𝑑𝑖𝑠.

 are the maximal allowable charge and 

discharge values, respectively, for the specified battery. For 

normal battery operation, it is common to set 𝐸𝑏 ≥ 10% and 

𝐸𝑏  ≤  90% of the maximum energy that can be stored to 

increase the lifespan of the battery. 

E. Fuel Cell 

Fuel cells are effective generators for long periods of 

time, from several minutes up to several months [14]. 

Because of this, it seems fuel cells are good candidates for 

energy generation for the nGrid. Similar to the battery, the 

fuel cell has generation limits 0 ≤ 𝑃𝐹𝐶(𝑡) ≤ �̅�𝐹𝐶 . In our 

model, we make the assumption that the total amount of 

energy the fuel cell is capable of supplying over time is not 

restricted, which means that there is an essentially limitless 

supply of hydrogen and oxygen to power the chemical 

reaction. An electrolyzer and constant water supply could 

easily support this assumption. Adding the electrolyzer to 

the nGrid load as well as active hydrogen/oxygen tank 

monitoring will be considered in further work.  

III. MATHEMATICAL MODELING AND JUMP LINEAR 

QUADRATIC (JLQ) CONTROL FORMULATION 

By analyzing and classifying the hourly weather 

condition, we suggest the solar generation process using 

roof- top solar panels could be seen as a continuous Markov 

chain with three states: a sunny state, a cloudy state, and an 

overcast state. Markov chain hypothesis mentioned in the 

introduction is central to our work. This hypothesis makes 

the resulting model more tractable mathematically; 

moreover, an important body of theory and applications 

exists for the control of jump linear Markov models 

[8,10,13,15]. In the following, we use the resulting Markov 

chain model of the solar generation process as a basis for the 

design of adequate control policies. Therefore, we first 
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develop a simplified model of power balance dynamics with 

random solar input disturbances. Subsequently, a quadratic 

optimal control problem is formulated and the model is 

transformed so that the existing theory [8] can be applied.  

A.  Simplified Mathematical Model 

Since the rate of change of energy is power, for this 

preliminary simplified analysis of the energy management of 

an nGrid, the power balance equations may be written as 

follows: 

𝑑𝐸𝑏(𝑡)

𝑑𝑡
= 𝛼𝐸𝑏(𝑡) + (1 − 𝑎𝑖)𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) − 𝑏𝑖𝑃𝑏𝑎𝑡𝑡

𝑑𝑖𝑠. (𝑡) + (1 −

𝑐𝑖)𝑃𝐹𝐶(𝑡)                                                                 (5) 
𝑑𝐸𝑙(𝑡)

𝑑𝑡
= 𝛽𝐸𝑙(𝑡) + 𝑎𝑖𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) + 𝑏𝑖𝑃𝑏𝑎𝑡𝑡

𝑑𝑖𝑠. (𝑡) + 𝑐𝑖𝑃𝐹𝐶(𝑡)         (6) 

 

The terms 𝐸𝑏(𝑡) and 𝐸𝑙(𝑡) correspond to the energy stored 

in the battery and the energy required by the load, 

respectively. We showed that in II.C, 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) is reasonably 

modeled as a continuous Markov chain with 3 states and 

they are piecewise constant in each mode. Thus, the global 

system may be described as a continuous linear time 

invariant system with Markovian jumps and a hybrid 

(continuous-discrete) state space [𝑥1 𝑥2 𝑟]
𝑇 . The scalar 

coefficients 𝛼 and 𝛽 take the appropriate units of (hour)−1 

and are set equal to −1 for this analysis which ensures 

balanced power at steady state. If we define the state 

variables, output variables, control variables and stochastic 

input variables as  

 𝑥(𝑡) = [
𝐸𝑏(𝑡)

𝐸𝑙(𝑡)
] , 𝑦(𝑡) = [

𝐸𝑏(𝑡)

𝐸𝑙(𝑡)
] , 𝑢(𝑡) = [

𝑃𝑏𝑎𝑡𝑡
𝑑𝑖𝑠 (𝑡)

𝑃𝐹𝐶(𝑡)
],   

𝑃𝑠𝑜𝑙𝑎𝑟(𝑡) = 𝑃𝑠(𝑟(𝑡)) 

the state-space representation becomes 

            {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑟(𝑡))𝑢(𝑡) + 𝑃𝑠(𝑟(𝑡))

𝑦(𝑡) = 𝐶𝑥(𝑡)                                                
             (7) 

where 𝑥(𝑡) ∈ ℝ2 is the continuous portion of the state and 

r(t) is the discrete portion of the state and evolves according 

to a continuous time Markov chain, with 

𝐴 = [
−1 0
0 −1

] ,   𝐵(𝑟(𝑡)) = [
−𝑏𝑖 1 − 𝑐𝑖
𝑏𝑖 𝑐𝑖

] = 𝐵𝑖 ,

𝐶 = [
1 0
0 1

],    𝑃𝑠(𝑟(𝑡)) = [
1 − 𝑎𝑖
𝑎𝑖

] 𝑃𝑖

 

for  𝑟(𝑡) = 𝑖. Ps(r(t)) is power generated by the PV and 

assumed constant in each mode. Based on the nGrid 

components values 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 and 𝑃𝑖  are chosen for each 

mode of operation. 𝑃𝑖  being the power generated by solar 

panels at each mode i.  

B. Jump Linear Systems Overview 

The following jump linear optimal control overview is 

based on [8] and [14]. The state-space representation of a 

jump linear system has the form 

�̇�(𝑡) = 𝐴(𝑟(𝑡))𝑥(𝑡) + 𝐵(𝑟(𝑡))𝑢(𝑡);      𝑥(𝑡𝑜) = 𝑥𝑜             (8) 

where 𝑥(𝑡) ∈ ℝ2 and 𝑢(𝑡) ∈ ℝ2 represent the plant state and 

input vector, respectively. 𝐴(𝑟(𝑡)) and 𝐵(𝑟(𝑡)) are 2 × 2 

and 2 × 2 matrices, respectively, where 𝑟(𝑡) denotes the 

current system mode determined by a finite state Markov 

jump process. When the system is operating in the i
th

 mode, 

the corresponding system matrices 

[𝐴(𝑟(𝑡)), 𝐵(𝑟(𝑡))] |𝑟(𝑡)=𝑖 will be denoted [𝐴𝑖, 𝐵𝑖]. When 

designing an optimal controller for such a system, one aims 

to minimize the quadratic cost function,  

  
𝐽(𝑢, 𝑡0, 𝑟(𝑡0), 𝑥0) =

𝚬 {
1

2
∫ (𝑥𝑇(𝑡)𝑄(𝑟(𝑡))𝑥(𝑡) +
𝑡𝑓
𝑡0

𝑢𝑇(𝑡)𝑅(𝑟(𝑡))𝑢(𝑡)) 𝑑𝑡  |  𝑡0, 𝑟(𝑡0), 𝑥0},          (9) 

t0 being the initial time, tf the final time and E{.} indicating 

expected value. The symmetric weighting matrices, 

𝑄(𝑟(𝑡)) and 𝑅(𝑟(𝑡)), are mode dependent and are used to 

tune the system response to fit desired characteristics. In the 

following, they will be denoted as [𝑄𝑖 , 𝑅𝑖] with 𝑄𝑖 ≥
0 (positive semi − definite) and 𝑅𝑖 > 0 (positive definite) 

when the system is operating in its i
th

 mode. For the finite 

horizon problem with performance measure given by (9), the 

optimal regulator is given as a time varying feedback law:  

         𝑢∗(𝑡) = −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖(𝑡)𝑥(𝑡)     for    𝑟(𝑡) = 𝑖           (10) 

where matrices 𝐾𝑖(𝑡)  (𝑖 = 1,2,3) satisfy the set of coupled 

differential matrix Riccati equation: 

�̇�𝑖(𝑡) =

−𝐴𝑖
𝑇𝐾𝑖(𝑡) − 𝐾𝑖(𝑡)𝐴𝑖 − 𝑄𝑖 + 𝐾𝑖(𝑡)𝑆𝑖𝐾𝑖(𝑡) − ∑ 𝜋𝑖𝑗𝐾𝑗(𝑡)  

𝑁
𝑗=1    (11) 

with 𝑆𝑖 = 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇  and 𝐾𝑖(𝑡𝑓) = 0.  

        In the following, we will be interested in steady state 

values of 𝐾𝑖(𝑡). Under stochastic controllability and 

observability conditions [13], the Riccati gains for the 

infinite horizon problem will converge to the unique positive 

definite solutions of the following set of coupled algebraic 

Riccati equations: 

    𝐴𝑖
𝑇𝐾𝑖

∞ + 𝐾𝑖
∞𝐴𝑖 + 𝑄𝑖 − 𝐾𝑖

∞𝑆𝑖𝐾𝑖
∞ + ∑ 𝜋𝑖𝑗𝐾𝑗

∞ = 0𝑁
𝑗=1        (12) 

In case of the infinite horizon problem, the regulator 

minimizes the following performance measure:  

   𝐽 = 𝑙𝑖𝑚̅̅̅̅̅𝑡𝑓→∞
1

𝑡𝑓
𝐸{∫ (𝑥𝑇

𝑡𝑓
𝑡0

(𝑡)𝑄𝑖𝑥(𝑡) + 𝑢
𝑇(𝑡)𝑅𝑖𝑢(𝑡))𝑑𝑡},     (13) 

the resulting control law becomes: 

       𝑢∗(𝑡) = −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖
∞𝑥(𝑡)     for    𝑟(𝑡) = 𝑖                       (14) 

The solution of Eq. (12) is obtained using the numerical 

algorithm presented in [14]. 

C. JLQ Control Applied to nGrid 

Our Objective is to find a control law that will optimize 

the power required to meet the household energy demand. 

We assume that cost of energy is the same for all sources. In 

order to complete our model formulation as a standard 

framework proposed in [15], we do away with the piecewise 

constant vector Ps(r(t)) in Eq. (7) by means of the following 

change of variables: 

�̃�1(𝑡) = 𝑥1(𝑡) + (1 − 𝑎𝑖)𝑃𝑖/𝛼                       (15) 

                           �̃�2(𝑡) = 𝑥2(𝑡) + 𝑎𝑖𝑃𝑖/𝛽                            
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This change of variable creates discontinuities of state 

trajectories at jump times. These discontinuities are due to 

constant solar power that differ from mode to mode. Thus, 

the resulting system model given by: 

                  �̇̃�(𝑡) = 𝐴�̃�(𝑡) + 𝐵(𝑟(𝑡))�̃�(𝑡)                  (16) 

at continuity points of r(t) and by Eq. (17) at jump instants. 

            �̃�(𝑡) = �̃�(𝑡−) + 𝑞𝑖𝑗                   (17) 

with     𝑞𝑖𝑗 = (
(1 − 𝑎𝑖)𝑃𝑖 − (1 − 𝑎𝑗)𝑃𝑗

𝑎𝑖𝑃𝑖 − 𝑎𝑗𝑃𝑗
) 

 

�̃�(𝑡−) is the limit from the left of �̃�(𝜏) as  goes to t and qij 

is the change due to constant perturbations that differ from 

mode i to mode j.  

       For the infinite horizon problem with performance 

measure given by Eq. (13), the optimal regulator is given as 

a time varying feedback law affine in state: 

𝑢∗(𝑡) = −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖
∞(�̃�(𝑡) + 𝛼𝑖)     for    𝑟(𝑡) = 𝑖         (18) 

where the 𝛼𝑖(𝑡) bias vector evolves according to: 

𝛼𝑖̇ (𝑡) = (𝐴 + 𝐾𝑖
−1𝑄𝑖)𝛼𝑖(𝑡) + ∑ 𝜋𝑖𝑗

3
𝑗=1 𝐾𝑖

−1𝐾𝑗(𝛼𝑖(𝑡) − 𝛼𝑗(𝑡) −

𝑞𝑖𝑗)                       (19) 

              𝛼𝑖(𝑡𝑓) = 0      𝑖 = 1,2,3 

The bias 𝛼𝑖(𝑡) relative to the standard solution comes from 

the fact that jumps coincide with state discontinuities 

obtained by Eq. (17). The 𝛼𝑖′s can be obtained from Eq. (19) 

considered in steady state once Eq. (12) is solved. 

In the next section, we provide the Markov model using 

the real data plus the obtained simulation results. 

 

IV. EXAMPLE SYSTEM AND RESULTS 

 

A. Example System Specifications 

In this section, we will consider a system that conforms to 

the model described in the previous section and examine the 

simulation results. The load pertains to a small U.S. 

household, one similar in size and energy usage to common 

off-the-grid homes. The peak demand of 0.86 𝑘𝑊 occurs in 

the evening and the mean usage is 0.49 𝑘𝑊. For this 

simulation, the initial hour is 6 pm. We assume no sun until 

6 am.  

The system has unique state-space matrices, [𝐴𝑖 , 𝐵𝑖], for 

each mode 𝑟(𝑡). It will operate in a continuous state with 

𝑟(𝑡) = 𝑖 until the next mode, 𝑟(𝑡) = 𝑗, occurs. During the 

night 𝑃𝑖 = 0 and the system switches to a deterministic 

structure.  

Among the components of the nGrid, we identified the 

solar contribution as the most influential. During a sunny 

day, the solar production completely satisfies the demand 

with some excess energy that can be stored in the battery for 

later use. The fuel cell was designed to satisfy the demand 

when the battery and solar could not. Lastly, for the 

household in this example, we employed a 7 𝑘𝑊ℎ battery 

and imposed capacity limits at 𝐸𝑏 =  1 𝑘𝑊ℎ 𝑎𝑛𝑑 𝐸𝑏 =
6 𝑘𝑊ℎ to ensure maximum healthy lifetime of the device. 

We chose the initial state of charge of the battery to be 

3.5 𝑘𝑊ℎ. 

B. Monte Carlo Simulation Results 

In the following, we present results for a 5-day period. 

The cloud coverage was generated using the Markov chain 

transition matrix explained in Section II. Figure 3 presents 

household load data with simulated system response (top 

graph) and simulated cloud coverage (bottom graph).  

 
Fig. 3.  System response with simulated response (top) and simulated cloud 

coverage (bottom). 

 

Fig. 4.  Solar, battery, and fuel cell contributions (long overcast and night 
period). 

Figure 4 shows the optimal control law (top graph) obtained 

from Eq. (18). During overcast weather and nighttime, the 

controller successfully compensates for the decreased solar 

generation by discharging the battery to match the load. The 

solar generation is a stochastic variable following the 

Markovian process described earlier. Depending on the 

weather, solar generation takes a constant value for that 

hour. The battery power takes a negative value during sunny 

and partially cloudy weather, which indicates that the battery 

is charging. Likewise, when the battery and fuel cell 

generation values are positive, they are discharging to satisfy 

the demand. The total amount of energy stored in the battery 

is shown in Figure 4 (bottom graph). The battery’s 

maximum and minimum allowed levels are indicated by the 
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horizontal lines. An item worth noting is that during the day, 

depending on solar generation which is piecewise constant 

in each mode, the battery and fuel cell may generate too 

much or not enough energy. This is due to two factors. First, 

for simplicity, we assumed that the set point is constant for 

one hour, since regulation is simpler than tracking for JLQ 

control. Second, the values of Ri and Qi at each mode are not 

optimized since they are obtained by trial and error. In future 

work, we will use the theory of stochastic processes and 

their first passage time theory to develop a rapid tuning of 

the control law.  

Due to the mostly sunny weather of this 5-day simulation, 

the battery never reaches the minimum allowed charge level 

(as seen in Figure 4). The battery’s total charge trends 

upward over the 5-day period.  

V. CONCLUSION AND FUTURE WORK 

This paper presents the application of jump linear 

quadratic control to the energy management problem of an 

islanded microgrid - nGrid. The nGrid utilizes solar and fuel 

cell generation combined with a battery energy storage 

system to satisfy the load of a small household. The solar 

generation is modeled as a continuous Markov process.  

Simulation results for an example system showed the 

effectiveness of the proposed control method to track the 

load profile of the house. The control method was able to 

accommodate the stochastic jumps between operation modes 

and satisfy the demand each night. This control scheme 

paired with the presented microgrid architecture proved to 

be a robust and efficient implementation for grid islanded 

operations.  

Future work will include more accurate battery and fuel 

cell models in order to better predict their generation output. 

Furthermore, in an effort to eventually compensate for the 

fact that the real problem is state constrained, we will use the 

theory of stochastic processes and their first passage-times to 

develop approximate theoretical expressions of battery mean 

times to first overcharge or first full discharge as a function 

of the performance measure parameters used in deriving the 

control law. This knowledge is subsequently used in 

achieving a rapid tuning of that law. 
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