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Abstract—In this paper, we design posted price mechanisms
for assigning electric vehicles (EVs) to electric vehicle supply
equipment (EVSEs) to maximize the smart charging potential of
a workplace parking facility. Our approach can accommodate
diverse smart charging objectives for the facility, e.g. minimize
electricity costs from time-of-use rates, maximize behind-the-
meter solar integration, or provide ancillary services. We
also accommodate individual users’ preferences for specific
charging spots. To optimize the assignment of EVs to EVSEs,
we develop three different pricing heuristics that allow each
arriving EV to solve for its own optimal (i.e., cost minimizing)
EVSE assignment. The first approach is based on the use of
online convex optimization (OCO) to learn the EVSE prices
and performs price updates after each arrival. We discuss
performance guarantees for the OCO approach compared to
the optimal offline solution. The second and third approaches
make use of Lagrangian relaxation to decompose a modified
multi-user problem into many single-user problems of small
dimension. These two approaches provide EVSE prices that
are only updated once per day. The second approach uses a
stochastic supergradient based method to converge to optimal
daily EVSE prices and can only accommodate stationary charge
statistics. The third approach makes use of a one-shot learning
technique to learn the prices each day, which allows for non-
stationary charge request statistics.

I. INTRODUCTION

In recent years, sales of both battery electric vehicles
(BEVs) and plug-in hybrid electric vehicles (PHEVs) have
increased rapidly. In the U.S., the annual sales of these EVs
have grown by over 700% since 2011 [1]. Furthermore,
technology improvements in both the EVs and EVSEs have
decreased the average charging time to 4.8 hours for BEVs
and 2.8 hours for PHEVs [2]. With the increasing number of
vehicles with short charging times, smart charging techniques
such as load shifting and demand response have potential to
grow significantly.

Specifically, there is much potential at workplaces with
large parking infrastructures where consistently high numbers
of EVs park and charge for the duration of the workday. Cur-
rently, many workplaces with charging infrastructure make
use of Single-Output-Single-Cable (SOSC) EVSEs where
one EV plugs into one EVSE for an unknown duration of the
workday. In this case, the EVSE immediately begins charging
the EV after being plugged in and continues until the EV’s
battery is fully charged or the EV departs. Additionally,
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the employee that owns the EV may or may not remove
his EV from the EVSE during the workday to allow other
employees usage. Obviously, this system is inefficient for the
owners of the EVs if there is high demand of the EVSEs.
Moreover, the facility management is unable to benefit from
smart charging opportunities due to the inability to control
charging schedules.

To improve the system for both the EV owners and
facility management, we assume the parking structure can be
equipped with one of the two following solutions: 1) Single-
Output Multiple-Cable (SOMC) EVSEs may be used in lieu
of SOSC EVSEs [3]. Each SOMC EVSE can be connected
to multiple EVs but only charges one EV at a time (Single
Output). This enables facility management to devise a smart
charging plan for each EVSE for the duration of the day,
while satisfying the charging needs of all EVs; 2) Alterna-
tively, a reservation based mechanism can be implemented
on SOSC EVSEs. In this case, EVs make reservations at
the beginning of the day to utilize a certain SOSC EVSE
during a specific timeslot. Having full information about the
energy demand each EVSE needs to satisfy, this second
solution will also enable facility management implement
smart charging solutions such as load shifting and providing
ancillary services to the local grid.

A number of past studies have proposed smart charging
implementations for large populations of EVs. In both [4]
and [5], large sets of EVs are used for the purpose of
frequency regulation. Similarly, [6] presents a parking lot
system with EVSEs and solar generation capabilities for
capacity enhancement of the distribution system. The authors
in [7] present an aggregation method for large numbers of
distributed EVs for ancillary service provision. Reviews of
the many services and benefits that can be provided by smart
charging and EV fleet aggregation can be found in [8] and [9].
Besides the smart charging implementations, there has been
research on the assignment of EVs to EVSEs. The authors in
[10] utilized a game theoretic pricing method to guide EVs to
EVSEs. However, their goals were aimed at minimizing con-
gestion and optimizing utilization of power evenly across the
network of EVSEs. Additionally, [11] presented centralized
assignment heuristics for EVs to EVSEs within a workplace
parking structure. The paper closest to ours is [3], where
the concept of an SOMC EVSE was presented; however, a
greedy heuristic was used in their implementation to assign
EVs to EVSEs.
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In this paper, we design posted price mechanisms for
assigning arriving EVs to EVSEs with the goal of maxi-
mizing the parking structure’s smart charging potential. Our
approach can accommodate many diverse smart charging
objectives for the facility, e.g. minimize electricity costs from
time-of-use rates, maximize behind-the-meter solar integra-
tion, or provide ancillary services. To give a simple example
of the benefits of smart assignment, consider a workplace
where all of the arriving employees with EVs prefer to use the
EVSEs that are closest to the building entrance. Without an
assignment mechanism, the EVSEs near the building entrance
will have large total energy requests and cannot provide much
smart charging benefit. The same holds for the EVSEs farther
from the entrance with few EVs plugged in. To create a better
assignment of EVs to EVSEs, we develop three different
pricing heuristics that allow each arriving EV to solve for
its own optimal (i.e., cost minimizing) EVSE assignment.
The first approach is based on the use of online convex
optimization to learn the EVSE prices and performs price
updates after each arrival. The second and third approaches
make use of a Lagrangian relaxation to decompose a modified
multi-user problem into many single-user problems of small
dimension. The latter two approaches provide EVSE prices
that are only updated once per day.

The remainder of this paper is organized as follows.
Section II presents the system structure and introduces the
problem formulation. Section III presents our OCO heuristic
with its performance guarantee. Section IV describes the
modified problem formulation for dual decomposition with
the Lagrangian relaxation to provide EVSE prices that are
updated once per day. Section V presents an extension to
the approach from Section IV by adding a one-shot learning
technique for the EVSE prices each day. Section VI discusses
the effects of rounding. Section VII presents numerical results
to validate the proposed heuristics.

II. PROBLEM FORMULATION

A. EVs and EVSEs—Problem notation

In this section, we describe the attributes of the arriving
EVs and the EVSEs in the parking structure. Each EVSE
in the structure has index b ∈ B = {1, . . . , B}. EV arrival
events are indexed by r ∈ R = {1, . . . , R}. The amount of
energy requested by arrival r on each day k = 1, . . . ,K is
denoted as E(r,k). Each EV arrives with a feasible subset of
EVSEs that it would like to use, denoted as F (r,k) ⊆ B.
We assume that for each arrival r, E(r,k) and F (r,k) are
sampled i.i.d. values. For each arrival r, the EV is assigned to
EVSEs; this assignment takes the form of a 0, 1 assignment
vector ~x(r,k) of dimension B×1. The total amount of energy
requested by the EVs connected to EVSE b is denoted by
`
(k)
b =

∑R
r=1E

(r,k)x
(r,k)
b and is referred to as the level of

the EVSE.

B. State dynamics and problem formulation

In this section, we present the state dynamics and problem
formulation for optimally assigning EVs to EVSEs as they

arrive in the morning. The state of the structure at stage
r = 1, . . . , R (after the arrival of EV r) on day k is fully
described by the levels of the EVSEs ~̀ (r,k). At the start
of each day k (i.e. r = 1), ~̀ (1,k) is initialized at zero
and increases as each EV r parks within the structure. It
is important to note that we assume all employees arrive
in the morning and park their EV for the duration of the
workday (i.e., there are no early departures or late arrivals).
Additionally, we assume all R EVs arrive in a short time
period every morning. As such, the inter-arrival times are
insignificant compared to the length of the workday. Due to
the negligible inter-arrival times and the assumption that there
are no early departures, the total operational cost incurred
in order to serve the charge requests of all EVs in the
parking infrastructure is a function of the levels of the EVSEs
after the last EV arrives for the day. Considering smart
charging opportunities, we assume that the daily operational
cost is a strongly convex function CB(~̀

(k)) of the EVSE
levels ~̀(k) = [`

(k)
b ]b∈B. With strong convexity being the

only restriction on CB(~̀
(k)), this objective function can be

designed for many objectives like energy costs or prioritizing
behind-the-meter renewable integration.

Let us assume that the facility manager has access to
statistics of the arrivals’ energy requests and feasible EVSE
subsets. Theoretically, the problem of assigning EVs to
EVSEs as they arrive can be formulated as a dynamic
program where the entire cost is realized at the final stage,
when the R-th arrival enters the parking structure for the
day. This can also be formulated as a stochastic optimization
problem P (k),I for each day k:

min
~x(r,k)∈F (r,k)

ξ , `
(k)
b |I

(r−1,k)

r=1,...,R

E
ξ

[
CB(~̀

(k)
ξ )

]
(1a)

s.t. `
(k)
b,ξ =

R∑
r=1

E
(r,k)
ξ x

(r,k)
b ∀b ∈ B (1b)

B∑
b=1

x
(r,k)
b = 1 ∀r ∈ R (1c)

x
(r,k)
b ∈ {0, 1} ∀b ∈ B, r ∈ R. (1d)

The objective function captures the expected cost of the
parking facility over the set of different scenarios ξ ∈ Ξ
that may happen given the random nature of the EV charge
requests E(r,k) and their set of feasible EVSEs F (r,k).
Constraint (1b) defines the energy request level for each
EVSE. Constraint (1c) states that each EV has to be allo-
cated to an EVSE each day. Constraint (1d) is an integer
constraint on the assignments as EVs cannot be split among
different EVSEs. Moreover, due to the online nature of the
problem, each assignment is made with a nonanticipativity
constraint. We denote I(r,k) as the information collected
which is available when selecting an assignment at stage
r + 1 on day k. This information represents the collection
of all previous assignments and energy levels of the parking
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structure. This information evolves as EVs arrive each day,
as I(r,k) = I(r−1,k) ∪ {~x(r,k), ~̀ (r,k)}.

If the optimization problem in (1a)-(1d) can be directly
solved then one can derive a shadow pricing mechanism that
updates posted prices after each EV arrival. However, exact
solutions suffer from dimensionality issues as the number
of EVs and EVSEs increases. Furthermore, the statistics of
energy requests and feasible EVSEs might be unavailable,
unreliable, or vary from day to day. As such, deriving a
posted price mechanism by directly solving the stochastic
optimization problem is both intractable as the number of
states grows as well as potentially inaccurate due to its
dependency on arrival statistics.

Accordingly, we propose posted price heuristics to allow
the EVs to solve for their own allocations without suffering
from these aforementioned issues. Our approach relies on
convex programming techniques. Hence, for the purposes of
this paper, we relax the integer constraint in the following
sections and allow fractional allocations (with cost P (k),F ).
We will discuss the effects of this relaxation on the quality
of our solutions and rounding techniques in Section VI.

III. ONLINE STOCHASTIC CONVEX OPTIMIZATION FOR
DYNAMICALLY UPDATED PRICES

In this section, we present an online primal-dual algo-
rithm for posted prices and discuss performance guarantees
compared to the optimal offline solution (i.e., a solution that
has access to all EV arrival information at the beginning of
the day). Our algorithm makes use of the learning paradigm
of online convex optimization. In the OCO framework, one
considers a sequence of stages where at each stage a learner
selects a vector from a convex set that affects their cost. In
many cases, the learner’s choice is compared to the optimal
choice in hindsight, and the learner suffers a loss dependant
on this difference. Our algorithm makes use of primal-dual
OCO techniques to predict the dual variables at each stage to
be used as EVSE prices. Using OCO to predict dual variables
provides an efficient method to update EVSE prices after each
arrival and allows our algorithm to accept input sampled from
unknown distributions that vary from day to day.

Our posted price heuristic for online EV assignment with
price updates occurring at each state transition is based off the
OCO framework presented in [12]. The framework in [12] is
as follows: Consider an online problem where the objective
is to maximize a concave function that is dependent on the
average assignment (instead of each individual assignment)
such as max f(~x avg) = max f( 1

R

∑R
r=1 ~x

(r)). The main
issue is the separability of the problem. If the problem was
max 1

R

∑R
r=1 f

(r)(~x(r)), the solution is simple, at each stage
set x(r) = argmaxx(r) f (r)(~x(r)). The issue arises from not
being able to know the contribution of ~x(r) to the entire
objective due to the non-anticipativity constraint. By use
of Fenchel duality, the objective function can be linearized
as f(~x avg) = f∗(~λ∗) − 1

R

∑R
r=1

~λ∗~x(r) for some ~λ∗ in
hindsight, where f∗() denotes the Fenchel conjugate of f().
This is defined as f∗(~λ) := max~y{~y T~λ − f(~y)}. Provided

with a prediction ~λ(r) of the dual variable ~λ∗, the linearized
objective function can be solved at each stage and the dual
variable is then updated for the next stage using an OCO
technique.

In order to utilize this framework, we slightly restructure
our stochastic optimization problem P (k),F through a change
of variable. First, we are no longer using the assignment
vector ~x(r,k); instead, we decide the amount of energy that
should be provided to each EV by each EVSE. This is done
through a simple mapping ~v(r,k) = ~x(r,k)E(r,k). Second,
we define the average charge assignment as ~v (avg,k) =
1
R

∑R
r=1 ~v

(r,k). Third, we use a modified cost function
C ′B(~v

(avg,k)) = CB(R~v
(avg,k)). With this notation, the

problem formulation (1a)-(1d) on day k is reformulated to
P

(k),F
OCO :

max
~v (r,k), ~v (avg,k)|I(r−1,k)

r=1,...,R

[
− C ′B(~v (avg,k))

]
(2a)

s.t. ~v (avg,k) =
1

R

R∑
r=1

~v (r,k) (2b)

B∑
b=1

v
(r,k)
b = E(r,k) ∀r ∈ R (2c)

1

E(r,k)
~v (r,k) ∈ F (r,k) ∀r ∈ R. (2d)

Our posted price algorithm, which updates the EVSE
prices after each EV’s arrival, is presented in Algorithm 1.

Algorithm 1 ONLINECONVEXALLOCATION(R)

1: Initialize ~λ(1)

2: for r = 1 : R do
3: EV r chooses assignment:

~v(r),† = argmax~v(r)
{
− ~λ(r)~v(r)

}
4: Central controller chooses ~λ(r+1) by doing an OCO

update for:
ψ(r)(~λ) = ~λ~v (r),† −max~y

{
~y~λ− C ′B(~y)

}
5: end for

This algorithm provides each incoming EV with a tractable
optimization problem to solve for their own assignment as
well as an efficient method for price updates at state transi-
tions. Intuitively, when an EV chooses EVSE b, the price,
λb should increase to dissuade congestion at that EVSE.
Similarly, if an EVSE is underutilized, the corresponding
price should be decreased to promote usage. Each time a new
arrival is allocated, the OCO learning algorithm observes loss
defined as ψ(r)(~λ) = ~λ~v (r),†−max~y

{
~y~λ−C ′B(~y)

}
. This loss

represents the regret from the current posted prices against
the optimal posted prices in hindsight. With the observed
loss, an OCO algorithm such as online gradient descent or the
multiplicative weight method can be applied to calculate the
next price vector [13]. Specifically, the multiplicative weights
update method is fast and efficient. Given that the OCO loss
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function is bounded, 0 ≤ ψ(r)(~λ) ≤ M , and a parameter
ε > 0, the new EVSE prices can be calculated as:

λ
(r+1)
b =

w
(r)
b∑
b w

(r)
b

, where w(r)
b = w

(r−1)
b (1 + ε)ψ

(r)(~e b)/M .

(3)
When considering the performance of Algorithm 1, we

compare it to the optimal offline solution. We denote the
optimal offline cost on day k as OPT (k). We use the concept
of regret as our performance metric. That is, the amount of
additive error of our algorithm’s cost on day k compared
to OPT (k). With the reformulation of the online stochastic
assignment problem in (2a)-(2d), the regret result from [12]
can be used as follows: After all R EVs have arrived on day
k, the average difference between the optimal offline solution
and our heuristic is:

E[avg-regret(R)] := E[(OPT (k) − C ′B(~v (avg,k)))]

= O

(√
B logB

R

)
.

(4)

IV. LAGRANGIAN RELAXATION FOR DAILY RESOURCE
PRICES

In some applications, it could be advantageous to have
prices that do not update after each arrival, contrasting the
OCO solution presented in Section III. Our first proposed
solution for learning the optimal state-independent prices is
appropriate for a workplace where the arriving EVs have
EVSE preferences and energy requests that are sampled i.i.d.
values from distributions that do not vary from day to day.
We will discuss an alternative solution that can function given
distributions that vary on a daily basis in Section V.

In this section, we use Lagrangian relaxation and dual
decomposition methods to design a posted price heuristic
for daily EVSE prices. However, in order to guarantee con-
vergence for a distributed solution, we modify our objective
function in (1a) by adding strongly convex user cost func-
tions. We then utilize a stochastic supergradient technique to
update the EVSE prices after each day. As more days pass,
the algorithm will continue to post improved prices until the
optimal prices are discovered.

A. Lagrangian relaxation

In order to utilize dual decomposition, we modify (1a) by
removing the restricted EVSE subset F (r,k) for each arrival.
Instead, arrivals experience a discomfort cost proportional
to the distance between their assigned EVSE and their
desired EVSE (denoted as ~x(r,pref)). We denote the strongly
convex cost of discomfort to EV r on day k due to the
distance of allocation ~x(r,k) to the desired spot ~x(r,pref) as
Cr(~x

(r,k)). Additionally, the sum
∑R
r=1 Cr(~x

(r,k)) represents
the discomfort cost incurred by all arrivals due to their EVSE
assignments on day k.

The modified primal can be written as:

min
~̀ (k)
ξ , ~x

(r,k)
ξ |I(r−1,k)

r=1,...,R

E
ξ

[
CB(~̀

(k)
ξ ) +

R∑
r=1

Cr(~x
(r,k)
ξ )

]
(5a)

s.t. `
(k)
b,ξ =

R∑
r=1

E
(r,k)
ξ x

(r,k)
b,ξ ∀b ∈ B (5b)

B∑
b=1

x
(r,k)
b,ξ = 1 ∀r ∈ R. (5c)

Solving (5a)-(5c) and setting EVSE prices as the Lagrange
multipliers of the respective dual suffers from the same issues
mentioned in Section II-B. An exact solution to (5a)-(5c) is
both intractable as the number of states grows and requires
knowledge of the arrival statistics. The dual problem with
daily Lagrangian multipliers on day k is given in (6):

max
~λ
(k)
ξ

min
~̀ (k)
ξ , ~x

(r,k)
ξ

|I(r−1,k)

r=1,...,R

E
ξ

{
CB(~̀

(k)
ξ ) +

R∑
r=1

Cr(~x
(r,k)
ξ ) (6)

+

B∑
b=1

λb,ξ

(( R∑
r=1

E
(r,k)
ξ x

(r,k)
b,ξ

)
− `(k)b,ξ

)}
.

Solving for the optimal scenario-dependent Lagrange mul-
tipliers in (6) amounts to solving the original DP in (5a)-
(5c). In order to reduce computational complexity, here we
impose a relaxation on the Lagrangian multipliers across
all scenarios. Specifically, we force uniform Lagrangian
multipliers across all scenarios: ~λξ = ~λ? ∀ξ ∈ Ξ. This
allows the central controller to calculate one set of prices
each morning (independent of scenario) and leave them for
the whole workday. This Lagrangian relaxation approach has
been studied in papers such as [14]–[17]. The resulting dual
problem is:

max
~λ

min
~̀ (k)
ξ , ~x

(r,k)
ξ

|I(r−1,k)

r=1,...,R

E
ξ

{
CB(~̀

(k)
ξ ) +

R∑
r=1

Cr(~x
(r,k)
ξ ) (7)

+

B∑
b=1

λb

(( R∑
r=1

E
(r,k)
ξ x

(r,k)
b,ξ

)
− `(k)b,ξ

)}
.

B. Relaxed primal problem

Before proposing our pricing mechanism, let us discuss
the effects of the relaxation (7) on our problem. By impos-
ing uniform Lagrange multipliers across all possible daily
scenarios, the dual problem presented in (7) is no longer the
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dual to the primal problem (5a)-(5c). Rather, it is the dual to
the new primal problem (8a)-(8c):

min
~̀ (k)
ξ , ~x

(r,k)
ξ |I(r−1,k)

r=1,...,R

E
ξ

[
CB(~̀

(k)
ξ ) +

R∑
r=1

Cr(~x
(r,k)
ξ )

]
(8a)

s.t. E
ξ

[
`
(k)
b,ξ

]
= E

ξ

[ R∑
r=1

E
(r,k)
ξ x

(r,k)
b,ξ

]
∀b ∈ B (8b)

B∑
b=1

x
b,(k)
r,ξ = 1 ∀r ∈ R. (8c)

Comparing (8a)-(8c) to (5a)-(5c), we note one difference: the
constraint (8b) holds only in expectation. That is, constraint
(5b) will not be upheld for some scenarios, but will hold
when averaging across all scenarios.

Given the optimal dual variables ~λ?, the relaxed problem
can be decomposed into R+ 1 smaller problems and solved
independently. On arrival each day k, EV r is required to
solve

~x(r,k),† = argmin
~x(r,k)

{
Cr(~x

(r,k)) +E(r,k)
(
[~λ?]T~x(r,k)

)}
(9)

in order to find its EVSE assignment for the day. Moreover,
the central controller solves (10):

~̀ (k),‡ = argmin
~̀(k)

{
CB(~̀

(k))− [~λ?]T ~̀ (k)

}
. (10)

C. Stochastic supergradient price updates

We now present an algorithm to find ~λ? in the absence
of statistics on the EVs arrivals. Denote the price posted on
day k of the algorithm as ~λ(k). We will propose a stochastic
supergradient based method to update the daily prices. We
assume that after each EV r arrives and solves (9), it submits
~x(r,k),† to the central EVSE controller. These values can be
used to calculate the realized energy levels of the EVSEs
denoted as ~̀ (k),† = E(r,k)~x(r,k),†. Note that this is not
equivalent to the energy levels of EVSEs on day k determined
through (10). This decentralized approach can be seen in
Algorithm 2.

The supergradient of (7) with respect to ~λ? is given by

~z
(k)
λ = E

ξ

(
~̀ (k),†
ξ − ~̀ (k),‡

ξ

)
. (11)

Instead of using a standard supergradient method and
evaluating the expectation in (11) across all scenarios, we
use the realized sample path as an unbiased estimate of the
supergradient. That is, for the simulated sample path for k =

1, . . . ,K ′ the constraint violation z̃(K
′)

λ = 1
K′

∑K′

k=1[
~̀ (k),†
ξ −

~̀ (k),‡
ξ ] is an unbiased estimate of a supergradient of the re-

laxed dual at K ′. To reduce the variance of the supergradient
estimate, batch gradient averaging across many sample paths

could be implemented [18]. The Lagrange multipliers are
updated at the end of each day k as follows:

~λ(k+1) = ~λ(k) + α(k)z̃
(k)
λ . (12)

where z̃
(k)
λ is an unbiased estimate of the supergradi-

ent. Additionally, α(k) is a diminishing step-size satisfying∑∞
i=1 α

i =∞ and
∑∞
i=1(α

i)2 <∞. A common implemen-
tation is α(k) = 1

k . We can achieve faster convergence to the
optimal prices by initializing after observing a few days of
EV arrivals. That is, record the mean capacity requests and
EVSE preferences and initialize the prices using this data.

Algorithm 2 LAGRANGIANRELAXATION(R)

1: Initialize ~λ(1) for day k = 1
2: for k = 1 : K do
3: for r = 1 : R do
4: EV r chooses assignment:

~x(r,k),† = argmin~x(r,k)

{
Cr(~x

(r,k)) +

E(r,k)
(
[~λ(k)]T~x(r,k)

)}
5: EV r submits ~x(r,k),† to the central controller
6: end for
7: Central controller solves:

~̀ (k),‡ = argmin~̀(k)
{
CB(~̀

(k))− [~λ(k)]T ~̀ (k)
}

8: Central controller updates the next day’s prices:
~λ(k+1) = ~λ(k) + α(k)z̃

(k)
λ

9: end for

V. ONE-SHOT LEARNING FOR DAILY RESOURCE PRICES

As seen in Section IV, the Lagrangian relaxation approach
requires a stationary arrival distribution across days in or-
der to converge to the optimal prices. A stationary arrival
distribution may not be applicable to all parking structures.
To post state-independent prices given non-stationary arrival
distributions, we make use of a learning-based algorithm
that works by “observing” EV arrivals for a short period
of time each day and then setting state-independent EVSE
prices for the rest of the day. This requires the first fraction
of EVs to reveal all their parameters to the central control.
Similar learning approaches have been studied extensively
for online linear program applications with random input
in [19], [20], and [21]. Moreover, [22] and [23] present
similar results for online problems with concave functions.
Specifically, [23] presents a one-shot learning algorithm that
solves a carefully chosen partial allocation problem and uses
the optimal solution to guide the future decisions. Utilizing
a similar approach, our heuristic solves a partial problem
using the first small fraction of arrivals to learn the near-
optimal dual price vector. Once this is accomplished, the
remaining large fraction of EVs allocate themselves using
the learned dual prices. This approach only requires solving
one optimization problem per day for a small fraction of the
arrivals.

Let s = dεRe be the fraction of arriving EVs that will
be used to learn the dual price vector, ~λ(k), where ε is a
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small fractional value (0 < ε < 1/2). For the first s = dεRe
EVs, the daily prices have yet to be established; therefore,
these first arrivals can either choose whatever EVSE they
desire most or, if there is some correlation across days, the
central controller can post the previous day’s prices. Either
option will result in a small loss. The goal is to select the
value ε carefully: if it is too large, then too many EVs will
be used in the learning phase, and the resulting operational
cost will be high. If ε is too small, the sample set of EVs
for the learning phase might not give a good estimate of the
incoming distribution. Once the learning phase is complete,
all subsequent arrivals r > s, will allocate themselves just as
in Section IV. At stage s of each day k, the central controller
uses the available information from the learning phase to
solve the following partial problem:

min
~̀ (k)
ξ , ~x

(r,k)
ξ

|I(s,k)
r=1,...,s

{
CB(~̀

(k)
ξ ) +

s∑
r=1

1

ε
Cr(~x

(r,k)
ξ )

}
(13a)

s.t. `
(k)
b,ξ =

s∑
r=1

1

ε
E

(r,k)
ξ x

(r,k)
b,ξ ∀b ∈ B (13b)

B∑
b=1

x
(r,k)
b,ξ = 1 ∀r ≤ s. (13c)

After solving this optimization, the central controller posts
~λ(k) (the optimal dual variable for constraint (13b)) and the
remaining EVs allocate themselves accordingly. With this
one-shot learning technique, we allow for different distribu-
tions of arriving EVs each day. The one-shot approach can
be seen in Algorithm 3.

Algorithm 3 ONE-SHOT-LEARNING ALLOCATION(ε, R)

1: s = dεRe
2: for r = 1 : s do
3: Central controller observes arrival r’s energy request

and EVSE preferences
4: Allocate EV r arbitrarily
5: end for
6: Central controller sets ~λ(k) as the optimal dual variable

from (13a)-(13c)
7: for r = s+ 1 : R do
8: EV r chooses assignment:

~x(r,k),† = argmin~x(r,k)

{
Cr(~x

(r,k)) +

E(r,k)
(
[~λ(k)]T~x(r,k)

)}
9: end for

VI. ONLINE ROUNDING

Since our proposed heuristics rely on convex programming
techniques, we relaxed the integer constraint in the previous
sections and allowed fractional allocations. However, in a
physical parking structure, one cannot fractionally assign EVs
to EVSEs. As such, rounding techniques must be used to

Fig. 1. Left Column: EV energy request distribution.
Right Column: EV arrival distribution.

generate feasible integer solutions. It is important to note
that any rounding technique must also be online as the EVs
need to be assigned as they arrive.

After arriving to the parking structure on day k, each
EV r solves for a fractional assignment ~x(r,k),†. An integer
solution ~x(r,k),I can be obtained using randomized rounding
[24]. Specifically, round the fractional assignments x(r,k),†b

to 1 with probability x
(r,k),†
b (and round x

(r,k),†
b to 0 with

probability 1− x(r,k),†b ). The expected total operational cost
of the randomized rounding solution is equal to the total
operational fractional cost [25]. However, this approach can
yield infeasible allocations (e.g., assigning the same EV to
multiple EVSEs or not at all). To combat this issue, the
rounding step can be repeated multiple times to ensure a
feasible solution or other application specific deterministic
rounding techniques can be used [26].

VII. SIMULATION RESULTS

In this section, we present simulation results highlighting
the performance of each posted price heuristic. The EV
energy request data used in the following simulations comes
from charging sessions of a company in Mountain View,
California. Only sessions started between 6:00am and 9:00am
are included to represent arrivals at a workplace. For the
following simulations, we generated daily scenarios based
on the distributions in Figure 1.

A. Nonstationary arrivals

In this section, we compare the performance of our OCO
heuristic and the optimal offline solution. We do not directly
compare OCO with the Lagrangian relaxation or one-shot
due to the addition of the user cost term in the objective
function for the latter two approaches.

Figure 2 shows the daily operational cost for a parking
structure where arrival EVSE preferences vary from day to
day across 10 days. The OCO algorithm always performs
close to the optimal solution. In Figure 2, the maximum regret
between OCO and OPT occurs on day 2 where we get an
average regret per arrival of 0.7603.
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Fig. 2. Total parking structure allocation costs for nonstationary arrival
preferences. K = 10, R = 61, B = 16.

Fig. 3. Stationary user preference histogram for R = 61.

B. Stationary arrivals

In this section, we compare the performance of one-shot
and the Lagrangian relaxation heuristic for an average work-
place where the same EVs arrive each day, with Cr(.)’s given
for each employee r, e.g., close to their office location. The
further the assignment, the higher the user’s dissatisfaction.
The histogram in Figure 3 presents the EVSE preferences that
were used for this simulation. Only the highest preference is
shown.

The simulation with stationary user preference inputs was
performed over K = 100 days to allow the Lagrange
relaxation solution’s prices to converge. Each day, R = 61
arrivals enter the parking structure with E(r,k) sampled from
the distribution presented in Figure 1.

Figure 4 shows the prices for all of the 16 EVSE’s available
on site converging for the Lagrangian relaxation algorithm.
The first 20 days have large oscillations in pricing due to the
algorithm exploring different prices. Once the prices have
converged, each EV will use the same EVSE each day.

Figure 5 shows shows the daily operational costs for both
the Lagrangian relaxation and one-shot heuristics across 100
days. The one-shot algorithm was implemented each day with
ε = 0.10. The Lagrangian relaxation performs poorly on
early days due to exploration of prices. Once the algorithm

Fig. 4. Lagrangian relaxation EVSE price convergence. K = 100, R = 61,
B = 16.

Fig. 5. Total parking structure allocation costs for stationary arrival
preferences. K = 100, R = 61, B = 16.

finds the optimal prices, the Lagrangian relaxation solution
produces total cost less than one-shot. Additionally, the one-
shot algorithm does not suffer from the initial cost spike.
This resulted in costs better than the Lagrangian relaxation
until day 40; however, the one-shot solution never performs
as well after this day. Clearly, if the incoming EV distribution
was non-stationary, this conclusion would not be valid and
the one-shot approach would be preferable.

VIII. CONCLUSION

In this paper, we proposed three posted price heuristics to
maximize the smart charging potential of EVSEs in a parking
structure. Our OCO solution provides fast price updates after
each arrival and an average regret guarantee compared to the
optimal offline solution. The Lagrangian relaxation solution
updates EVSE prices once per day and converges to the
optimal daily prices. Furthermore, the Lagrangian relaxation
solution can be modified into a one-shot learning algorithm
that uses the first fraction of arrivals to predict the daily prices
allowing nonstationary inputs. The Lagrangian relaxation,
one-shot, and OCO heuristics all provide posted prices for
the arriving EVs to quickly solve their own assignment. In
future work, we will include late arrivals and early departures
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into the system model. Additionally, we will further present
the potential smart charging benefits (from implementations
such as load shifting, demand response, and behind-the-meter
renewable integration) for parking infrastructure utilizing
smart assignment mechanisms.
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