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Abstract—In this paper, we design a pricing framework for
online electric vehicle (EV) parking assignment and charge
scheduling. Here, users with electric vehicles want to park
and charge at electric-vehicle-supply-equipment (EVSEs) at
different locations and arrive/depart throughout the day. The
goal is to assign and schedule users to the available EVSEs
while maximizing user utility and minimizing operational costs.
Our formulation can accommodate multiple locations, limited
resources, operational costs, as well as variable arrival patterns.
With this formulation, the parking facility management can
optimize for behind-the-meter solar integration and reduce
costs due to procuring electricity from the grid. We use an
online pricing mechanism to approximate the EVSE reservation
problem’s solution and we analyze the performance compared
to the offline solution. Our numerical simulation validates the
performance of the EVSE reservation system in a downtown
area with multiple parking locations equipped with EVSEs.

I. INTRODUCTION

Owners of electric vehicles (EVs) spend a large portion
of their average day at work and at home; however, an
overlooked third category also contributes to an EV owner’s
day. The average EV owner spends 1.5 − 4 hours per day
at locations such as shopping centers, travel stops, and
restaurants, meaning there is potential for EV charging at
these locations [1]. However, these miscellaneous locations
have highly variable statistics such as arrival time, departure
time, and energy requirement that create challenges for EV
assignment and charge scheduling. In this paper, we present
an EV parking assignment and charge scheduling framework
that does not need accurate input statistics with the purpose of
increasing smart-charging opportunities at various locations.

A number of past studies have proposed online mecha-
nisms for assigning EVs to electric-vehicle-supply-equipment
(EVSEs) as well as scheduling EV charging in geographically
limited areas such as parking lots or neighborhoods. Paper
[2] presents an online mechanism for EV charging with
electricity as an expiring resource; however, they allow
cancellation of previously allocated resources. Similarly, [3]
presents an online algorithm for EV charge scheduling with
revocation, meaning that allocations can be cancelled in order
to serve new requests with higher valuations. In [4], the
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authors present a budget scaling online auction framework
that allows users to update their bids while parked. Paper
[5] uses a modified consensus algorithm to share electricity
between EVs while considering electricity as a perishable and
continuously produced resource. Furthermore, [6] considers
an intelligent parking lot that maximizes the charge rate of
all EVs while taking into account time-varying electricity
prices. Paper [7] considers a workplace parking structure and
presents centralized assignment heuristics for EVs to EVSEs.
Papers [8]–[11] propose alternative pricing schemes for EV
charging in various related settings. In our previous work
[12], posted pricing mechanisms were examined for assigning
EVs to EVSEs with the goal of maximizing smart charging.
However, all users of the system were assumed to arrive in
a small time interval every morning instead of arriving in an
online fashion throughout the day.

With the exception of [7], [12], [13], most previous work
focuses on traditional single-output-single-cable (SOSC)
EVSEs which result in large fractions of potential charging
time spent idle. To increase smart-charging capabilities and
user service, we assume that the destinations are equipped
with single-output-multiple-cable (SOMC) EVSEs that can
be connected to multiple EVs but only charge one EV at a
time [13]. These SOMC EVSEs enable facility management
to devise a smart charging plan each day, while satisfying
the charging needs of all EVs.

In this paper, we present a framework for the online EVSE
reservation problem that accounts for users arriving and
departing throughout the day. Our formulation can accommo-
date many locations, limited resources, operational costs, as
well as variable arrival patterns. Additionally, our framework
does not revoke previous allocations. With this problem
formulation, the parking facility management can optimize
for behind-the-meter solar integration and reduce costs due to
procuring electricity from the grid. We use an online pricing
mechanism to approximate the EVSE reservation problem’s
solution and we analyze the performance compared to the
offline solution.

The remainder of the paper is organized as follows. Section
II presents the system structure and offline formulation for
the EVSE reservation problem. Section III presents the online
mechanism used to provide an approximate solution to the
EVSE reservation problem and discusses the online mecha-
nism’s performance guarantee. Section IV presents numerical
results to validate the performance of the online mechanism.



II. PROBLEM MODEL

A. EVSE Reservation System and Auction

In this section, we describe the attributes of the EVSE
reservation system as well as the users of the system. We
consider parking facilities at L different locations where
arriving EV owners can park and charge their vehicles. The
locations are dispersed and EV owners have preference to
park at locations close to the desired destination for their
visit. Moreover, at each location l ∈ L there are Ml SOMC
EVSEs available. Since SOMC EVSEs allow EVs to be
plugged in but not receive charge, users do not have to
remove their vehicle until the end of their visit. Each of the
Ml SOMC EVSEs at location l are equipped with Cl cables
allowing MlCl EVs to be parked within the location per time
slot t = 1, . . . , T . The EVSEs are constrained by the power
limitations of the hardware and are limited to a maximum
charge rate of El units of power.

In order to provide renewable energy for charging the EVs,
each parking location is equipped with a solar generation
system. For each parking location l, the generated solar is
time varying and we denote it as sl(t) ∈ [0, Sl] where Sl
is the maximum solar generation at location l. To optimize
for behind-the-meter integration, facility management aims
to use as much solar energy as possible before purchasing
energy from the local distribution grid. We denote the price
of energy purchased from the grid to serve location l at time
t as πl(t). Each parking location l can procure up to Gl(t)
units of energy at any time t (e.g., due to a transformer limit).

The visiting EV owners arrive and depart throughout the
day and request charge at various locations. There are N total
users participating in the EVSE auction each day and each
user n ∈ N can be characterized by user ‘type’:

θn = {t−n , t+n , hn, {ln}, {vnl}} ∈ Θ, (1)
where Θ is the type space of all possible users. The pa-
rameters are defined as follows. Suppose user n wants to
charge her EV and submits her reservation request at time
tn. By submitting a reservation request, user n commits to
arriving at any of her desired locations {ln} at time t−n and
leaving at t+n . During this time period, she requests that her
EV receives hn units of energy. The last component of θn
is {vnl}, which represents the values user n obtains if her
EV is assigned to receive charging at location l. We make
the assumption users receive non-negative value by charging
their EVs, i.e., vnl ≥ 0.

B. Offline EVSE Reservation Problem

When making a request to park and charge, each user
n submits her user type θn. The EVSE reservation system
uses the information in θn to generate the set of feasible
assignments and charging schedules (we denote these as
options On) that fulfill the user’s demands. Each option
o ∈ On for user n, corresponds to a cable reservation and
a charging schedule at an EVSE. We let cmlno (t) denote the
cable reservation request in option o of user n at EVSE m
at location l. We restrict cmlno (t) to be either 0, meaning no

cable is requested at time t, or 1, meaning user n wants a
cable reservation at t in option o at EVSE m at location l.
Similarly, we denote emlno (t) as the energy schedule for user
n in option o. The energy schedule, emlno (t), allows facility
management to customize when each EV will receive charge
and when they will be idle at the EVSE. We allow emlno (t)
to take different values (from a discrete set) over the usage
period t ∈ [t−n , t

+
n ], which allows each option o ∈ On to

request different amounts of energy at each time, as long as
the user’s total demands are met.

With this notation, the generated options for users’ reser-
vation requests (bids) can be expressed as:

Bn = {t−n , t+n , {cmlno (t)}, {emlno (t)}, {ln}, {vnl}}. (2)
After generating each bid package, the reservation system
decides whether to accept it as well as selecting which option
should fulfill the request if accepted. The binary variable xmlno
is set to 1 if option o of user n is accepted at EVSE m
at location l and 0 otherwise. The reservation system also
computes a payment p̂mlno for each user n to pay if option o
in their bid package is chosen. If a user is not admitted into
the EVSE reservation system, her utility is set to zero and
she parks at an auxiliary parking lot without EVSEs.

The cable and energy demands at EVSE m at location l
are denoted ymlc (t) and ymle (t), respectively and are given
by:

ymlc (t) =
∑
N ,On

cmlno (t)xmlno , (3)

ymle (t) =
∑
N ,On

emlno (t)xmlno . (4)

Additionally, each parking area l has to generate or procure
the energy needed to satisfy all the EVSE’s charge schedules.
As such, we denote ylg(t) as the total energy procurement
demand for location l. The total energy procurement demand
can be calculated as follows:

ylg(t) =
∑

N ,On,Ml

emlno (t)xmlno . (5)

Each location l has an operational cost function due to
the total amount of energy needed to satisfy all the admitted
EVs. For the energy procurement at location l, we have the
following operational cost function:
f lg(y

l
g(t)) =

0 ylg(t) ∈ [0, sl(t)]

πl(t)(y
l
g(t)− sl(t)) ylg(t) ∈

(
sl(t), sl(t) +Gl(t)]

+∞ ylg(t) > sl(t) +Gl(t).

(6)

Equation (6) represents the cost to produce the energy needed
in the whole parking location at each time slot. While the
demand is less than the available solar, the operational cost is
zero. Once the demand exceeds the available solar generation,
energy is bought from the grid until the transformer limit
Gl(t) is reached. After this point, no more energy can be
procured and the operational cost is set to infinity.

The goal of the EVSE reservation system is to assign and
schedule users to the available EVSEs to maximize social
welfare. If all the information of the N requests within the



time span [0, T ] is known in advance (assuming truthful
user valuations), we can write the following offline social
welfare maximization problem for assigning EVs to EVSEs
and determining their charging plan:

max
x

∑
N ,On,L,Ml

vnlx
ml
no −

∑
T ,L

f lg(y
l
g(t)) (7a)

subject to:∑
On,L,Ml

xmlno ≤ 1, ∀ n (7b)

xmlno ∈ {0, 1}, ∀ n, o, l,m (7c)

ymlc (t) ≤ Cl, ∀ l,m, t (7d)

ymle (t) ≤ El, ∀ l,m, t (7e)
and (3), (4), (5).

Here, the objective (7a) is to maximize the total welfare of all
the users minus the operational costs. Constraint (7b) ensures
that at most one option is selected for each user. Constraint
(7c) is an integer constraint on the assignment variable.
Constraints (7d) and (7e) ensure that the total allocation
resource demands do not exceed capacities. Equations (3)-
(5) sum up the resource demand at each EVSE m and
location l. If the integrality constraint (7c) is relaxed to
xmlno ≥ 0 (constraint (7b) ensures xmlno ≤ 1), we can find
the Fenchel dual of (7a)-(7e). We set un and pmlc (t), pmle (t),
plg(t) as the dual variables for constraint (7b) and (3), (4), (5),
respectively. In the following, the so-called Fenchel conjugate
of a function f(.) is defined as:

f∗(p(t)) = sup
y(t)≥0

{
p(t)y(t)− f(y(t))

}
. (8)

The Fenchel dual of (7a)-(7e) can be written:
min
u,p

∑
N
un +

∑
T ,L

f lg
∗(plg(t)) (9a)

+
∑
T ,L,Ml

(
fmlc

∗(pmlc (t)) + fmle
∗(pmle (t))

)
subject to:

un ≥ vnl −
∑
T

(
cmlno (t)pmlc (t) (9b)

+ emlno (t)
(
pmle (t) + plg(t)

))
∀ n, o, l,m

un ≥ 0, ∀ n (9c)

pmlc (t), pmle (t), plg(t) ≥ 0, ∀ l,m, t, (9d)
where f∗(p(t)) is the Fenchel conjugate for the limited
resources’ dual variables. The Fenchel conjugates for the
capacity constraints are as follows:

fml∗c (pmlc (t)) = pmlc (t)Cl, pmlc (t) ≥ 0 (10)

fml∗e (pmle (t)) = pmle (t)El, pmle (t) ≥ 0. (11)
The Fenchel conjugate for the energy procurement opera-
tional cost function is as follows:

f l∗g (plg(t)) = (12){
sl(t)p

l
g(t), plg(t) < πl(t)

(sl(t) +Gl(t))p
l
g(t)−Gl(t)πl(t) plg(t) ≥ πl(t).

C. Admittance, Rejection, and Allocation Decisions

In this section, we discuss how the EVSE system deter-
mines whether to accept or reject as well as how to allocate
user n if accepted. The EVSE reservation system assigns
xmlno = 1 for some option o ∈ On if user n is accepted into
the reservation system. For each user, the KKT conditions for
constraint (9b) in the offline dual problem indicate whether or
not a user should be admitted into the system. In the offline
solution, un will be zero unless constraint (9b) is tight for
some m ∈ Ml, l ∈ L and o ∈ On. The reservation system
solves the following equation to calculate user n’s utility:
un = max

{
0, max
On,L,Ml

{
vnl (13)

−
∑

t∈[t−n ,t+n ]

(
cmlno (t)pmlc (t) + emlno (t)(pmle (t) + plg(t))

)}}
.

If un returns zero, the utility of admitting user n into the
system is not large enough; therefore, user n is denied a
reservation and is sent to auxiliary parking. If un returns a
positive value, user n is admitted into the reservation system
with o ∈ On that maximizes equation (13).

In equation (13), pmlc (t), pmle (t), and plg(t) are the marginal
prices per unit of limited resource at EVSE m at location l.
As such, the payment user n must pay if admitted into the
system with option o can be written:
p̂mlno =

∑
t∈[t−n ,t+n ]

(
cmlno (t)pmlc (t) + emlno (t)(pmle (t) + plg(t))

)
.

(14)
Since the system is only admitting users with positive utili-
ties, the auction provides individual rationality for all users
n ∈ N . Furthermore, the system is assigning each user to the
option that maximizes the user’s utility function (valuation
minus payment) with respect to the current marginal prices.

The offline primal and dual formulations for the EVSE
reservation problem in (7a)-(7e) and (9a)-(9d) are established
assuming complete knowledge of all N users over the entire
time span. However, users submit reservations at random
times throughout the day, prohibiting an offline approach.
For example, when user n arrives, a new primal variable xmlno
and dual variable un must be assigned while still meeting the
constraints. The EVSE reservation system must decide im-
mediately whether to admit user n into the parking structure.
Furthermore, if user n is accepted, the EVSE reservation
system decides which option will fulfill the request and
calculates the user’s payment, which cannot be revoked or
modified later.

In the following, we discuss an online pricing solution
based on (7a)-(7e) and (9a)-(9d) in order to solve the EVSE
reservation problem and determine users’ payments in an
online fashion.

III. ONLINE PRICING MECHANISM

A. Payment Design

In the offline problem, the total demands y(t) for each
resource are known before solving. As such, the prices are
calculated as follows: if the demand y(t) is less than the



capacity of a resource, set the price p(t) equal to the marginal
operational cost f ′(y(t)). In this case, each user will pay for
cost of their allocation. For both the EVSE cables and energy,
since these resources do not have an operational cost, the
marginal prices p(t) are zero if the demand is below capacity.
If the demand of a resource exceeds the capacity, the marginal
prices act as filters to reject users with low valuations until
the filtered demand matches the capacity.

However, the EVSE reservation problem requires an online
solution. In this case, traditional dynamic programming based
strategies that rely on input models fall short for deriving the
optimal marginal prices due to intractable state-space size
and potentially inaccurate statistics. Since the demands for
the limited resources are not known in advance, the marginal
prices must be calculated online.

In the remainder of this section, we describe how the online
EVSE reservation system calculates the optimal marginal
prices on EVSE cables, energy, and generation based on a
pricing heuristic, for which we provide performance guaran-
tees. Specifically, our EVSE reservation system updates the
prices p(t) heuristically as the amounts of allocated resources
y(t) evolve, but only based on past observations. The pricing
scheme has two major goals: (1) to make sure that the
marginal gain in welfare from an allocation is greater than
the operational cost incurred to serve the allocation, and (2)
to filter out low value users early to ensure there are adequate
resources for higher value users later on.

The structure of the pricing functions we use is adopted
from [14], where the authors present a pricing framework for
data centers with limited computation resources and server
costs under an adverserial setting. For the EVSE cables, the
proposed marginal payment function is as follows:

pmlc (ymlc (t)) =
( Lc

4
∑
L(Ml + 1

2 )

)
(15)

×
(4
∑
L(Ml + 1

2 )Uc

Lc

) yml
c (t)

Cl ,

where ymlc (t) is the current demand for the cables at EVSE
m at location l at time t. Furthermore, Lc and Uc are
respectively the lower and upper bounds on users’ value per
cable per unit of time, which are defined as:
Lc = min

N ,On,L,Ml

vnl

2
∑
L(Ml + 1

2 )
∑
t∈[t−n ,t+n ] c

ml
no (t)

, (16a)

Uc = max
N ,On,L,Ml,T

vnl
cmlno (t)

, cmlno (t) 6= 0. (16b)

For the pricing function for EVSE energy units, we change
Cl to El in the exponent of equation (15) and calculate Le
and Ue using enlno(t) in (16a) and (16b). Additionally, Lg and
Ug are the same as Le and Ue, respectively. When ymlc (t) = 0
we note that (15) outputs a price low enough that any user
will be accepted (subject to Lc). As ymlc (t) increases, the
price increases exponentially. When ymlc (t) is equal to the
capacity, the marginal price is high enough to reject any user
(because we assume Uc is known beforehand). This ensures
resource capacity constraints will always be upheld.

For the piecewise linear operational cost to procure energy

in (6), we propose the following pricing function:

plg(y
l
g(t)) = πl(t) +

( Lg − πl(t)
4
∑
L(Ml + 1

2 )

)
× (17)

(4
∑
L(Ml + 1

2 )(Ug − πl(t))
Lg − πl(t)

) yl
g(t)

sl(t)+Gl(t) .

The marginal pricing function (17) for electricity procure-
ment is similar to the pricing function for the EVSE cables
and energy; however, the price of electricity πl(t) is included
in (17) to ensure each user’s payment is greater than the
electricity cost needed to charge their vehicle.

B. Online Auction Mechanism

In this section we describe the online EVSE reservation
algorithm titled ONLINEEVSERESERVATION presented in
Algorithm 1. When each user n arrives, the system first
generates the possible charge schedule options On that fulfill
her demands. The algorithm then decides whether to accept
or reject user n depending on user n’s potential utility gain
due to her valuation and the current resource prices (line 7).
If user n is admitted and allocated option o? ∈ On at EVSE
m? ∈Ml at location l?, she is charged payment according to
the total amount of cables, energy, and generation allocated
and the current marginal prices. The algorithm updates the
primal variables xmlno after each acceptance and rejection. The
total resource demands y(t) are updated in line 12 if user n
is accepted into the system. Similarly, the marginal resource
prices p(t) are updated accordingly in line 13.

We compare the total social welfare resulting from the
online solution to the optimal offline solution. Specifically,
an online mechanism is said to be α-competitive when the
ratio of social welfare from the optimal offline solution to
the social welfare from the mechanism is bounded by α. We
extend the competitive ratio result from [14] in Proposition
1. We note that the analysis used for this competitive ratio
assumes each user’s resource demands cmlno (t) and enlno(t)
are much smaller than the capacity limits, Cl and El,
respectively. This ensures no user purchases too large of a
fraction of the total available resources.

Proposition 1. The marginal pricing function (17) is α1-
competitive in social welfare when selling limited resources
with the piecewise linear operational cost in (6) where

α1 = 2 max
L,T

{
ln
(4
∑
L(Ml + 1

2 )(Ug − πl(t))
Lg − πl(t)

)}
.

Proof. In [14], the authors show their pricing functions are
α-competitive in social welfare with respect to the buying
and selling of limited computation resources at data centers.
Specifically, the pricing functions, operational cost functions,
and Fenchel conjugates for the limited resources need to sat-
isfy the Differential Allocation-Payment Relationship given
by:(
plg(t)− f lg ′(ylg(t))

)
dylg(t) ≥

1

αlg(t)
f l∗g
′(plg(t))dplg(t) (18)

for all l ∈ L, t ∈ [0, T ]. The derivatives of the energy-
procurement operational cost in (6) and its Fenchel conjugate



Algorithm 1 ONLINEEVSERESERVATION

Input: L,Ml, Cl, El, Gl, Sl, πl, Lc,e,g, Uc,e,g

Output: x, p
1: Define f l

g(y
l
g(t)) according to (6) at all locations.

2: Define the pricing functions p(y(t)) according to (15) and (17)
for cables, energy, and generation at all EVSEs and locations.

3: Initialize xml
no = 0, yml(t) = 0, un = 0.

4: Initialize prices p(0) according to (15) and (17).
5: Repeat for all N users:
6: User n submits θn, generate feasible charging options Bn.
7: Update dual variable un according to (13).
8: if un > 0 then
9: (o?,m?, l?) = argmaxL,Ml,On

{
vnl

−
∑

t∈[t−n ,t+n ]

(
cml
no (t)p

ml
c (t)

+eml
no (t)(p

ml
e (t) + plg(t))

)}
10: p̂m

?l?

no? =
∑

t∈[t−n ,t+n ]

(
cm

?l?

no? (t)pm
?l?

c (t)

+em
?l?

no? (t)(pm
?l?

e (t) + pl
?

g (t))
)

11: xm
?l?

no? = 1 and xml
no = 0 for all (o, l,m) 6= (o?, l?,m?)

12: Update total demand y(t) for cables, energy, and generation
according to (3)-(5).

13: Update marginal prices p(t) for cables, energy, and genera-
tion according to (15) and (17).

14: else
15: xml

no = 0, ∀ l, m, o.
16: end if
17: if ∃o?,m?, l? and xm

?l?

no? = 1 then
18: Accept user n and allocate cables and energy in parking

location l? at EVSE m?.
19: Charge user n at p̂m

?l?

no? .
20: else
21: Send user n to auxiliary parking.
22: end if

(12) are f lg
′(ylg(t)) and f l∗g

′(plg(t)), respectively. Taking
the derivative of the proposed pricing function (17) and
setting f lg

′(ylg(t)) = πl(t) minimizes the LHS of (18) and
f l∗g
′(plg(t)) = sl(t) + Gl(t) maximizes the RHS. As such,

after inserting the derivative of (17) in (18), we can show that
the Differential Allocation-Payment Relationship holds with
equality when choosing αlg(t) = ln

(
4
∑
L(Ml+

1
2 )(Ug−πl(t))

Lg−πl(t)

)
.

Because (18) holds for the pricing function, operational cost
function, and Fenchel conjugate, the remainder of the proof
follows from Lemma 1 and Theorem 2 in [14].

We note that the proposed pricing function (17) relies on
accurate day-ahead forecasts of the solar generation sl(t) for
t = 1, . . . , T at all locations l ∈ L. If the daily forecasts
for solar generation are inaccurate, there are two potential
undesirable outcomes: 1) solar generation is overestimated
and resources are over-allocated resulting in infeasible so-
lutions, which our online solution should avoid at all costs;
and 2) solar generation is underestimated and prices are set
too high and the system rejects users that should otherwise
be accepted. We analyze the case where we have a forecast
of the solar generation each day in terms of a confidence
interval. Specifically, the solar forecast takes the following
form:

sl(t) ∈ [sl(t), sl(t)], ∀t = 1, . . . , T, (19)

Fig. 1. Left: Bay Area electricity prices. Right: Solar generation profile.

where sl(t) is the actual solar generation at time t and the
terms sl(t) and sl(t) are lower and upper bounds given by
the forecast, respectively. To avoid possible infeasible allo-
cations associated with overestimation of solar availability,
we analyze the performance of pricing function (17) that
conservatively uses the underestimate of the solar generation,
sl(t), in Proposition 2.

Proposition 2. The marginal pricing function (17) with an
underestimate of solar generation, sl(t), is α2-competitive
in social welfare when selling limited resources with the
operational cost in (6) where

α2 = 2 max
L,T

{(sl(t) +Gl(t)

sl(t) +Gl(t)

)
×

ln
(4
∑
L(Ml + 1

2 )(Ug − πl(t))
Lg − πl(t)

)}
.

Proof. Similar to Proposition 1, we show the pricing func-
tion, operational cost function, and Fenchel conjugate for the
limited resource satisfy the Differential Allocation-Payment
Relationship in (18) with underestimated solar generation
amounts sl(t). The derivatives of the energy-procurement
operational cost in (6) and its Fenchel conjugate (12)
remain the same. Taking the derivative of the proposed
pricing function (17) with underestimated solar sl(t) and
setting f lg

′(ylg(t)) = πl(t) minimizes the LHS of (18) and
f l∗g
′(plg(t)) = sl(t) + Gl(t) maximizes the RHS. As such,

after inserting the derivative of (17) in (18), we can show that
the Differential Allocation-Payment Relationship holds when
αlg(t) =

( sl(t)+Gl(t)
sl(t)+Gl(t)

)
ln
(

4
∑
L(Ml+

1
2 )(Ug−πl(t))

Lg−πl(t)

)
. Because

(18) holds for the pricing function with underestimated solar
generation, operational cost function, and Fenchel conjugate,
the remainder of the proof follows from Lemma 1 and
Theorem 2 in [14].

IV. EXPERIMENTAL EVALUATION

In this section, we present simulation results highlighting
the performance of the EVSE reservation system. Electricity
prices and solar generation data (see Figure 1) were sourced
from actual California ISO data in the Bay Area [15], [16].
We simulated for a populated downtown area with l = 9
different parking locations where users can park and charge
their EVs. The number of EVSEs and cables available at
each location are listed in Table I. All nine locations in
the downtown area make use of the same solar generation



Location Ml Cl
Peak

Generation Price
Peak

Cable Price
Number of
EVs Served

1 4 4 0.247 7.4508 58
2 4 4 0.247 7.4508 67
3 8 4 0.730 7.4508 139
4 8 4 0.718 7.4508 131
5 2 4 0.247 7.4508 32
6 8 4 0.884 7.4508 128
7 2 4 0.247 7.4508 28
8 4 4 0.247 7.4508 74
9 2 4 0.247 7.4508 32

TABLE I
COLUMNS 2-3: EVSE AND CABLE COUNTS. COLUMNS 4-6: ONLINE

MECHANISM RESULTS.

Fig. 2. Social welfare comparison.

system with maximum generation of 512 kWh per time unit.
Similarly, the area can procure energy from the grid, with a
total procurement limit GL(t) = 512 kWh per time unit.
We simulated with N = 1000 users with various arrival
and departure times throughout the day. Each user arrives
with three preferred parking locations with three different
valuations vnl. For the charge schedules emlno (t), each user
was restricted to 0 or 1 kWh per time slot for the duration
of time in the parking location. The maximum duration for a
charge request was set to 8 hours and users valuations were
in the interval [$1.50, $7.50] depending on the amount of
desired energy.

In Figure 2 we compare the social welfare at each of
the nine parking locations from the EVSE reservation sys-
tem to the social welfare resulting from the case with no
assignment mechanism as well as an upper bound on the
optimal solution. For the no mechanism case, users arrive to
the downtown area and choose the available assignment and
charge schedule that maximizes their utility. For the upper
bound on the optimal solution, cable and energy capacities
at each EVSE were relaxed to prohibit any users from
being sent to the auxiliary parking resulting in the maximum
possible social welfare as long as each user’s valuation was
larger than the cost to serve them. We can see that the EVSE
reservation system outperforms the no mechanism case by the
largest amount in parking locations 3, 4, and 6. These are the
locations that were most desired by the users; therefore, these
locations had the most congested resources and the auction
mechanism was able to filter out low value users.

V. CONCLUSION

In this paper, we presented a framework for the online
EVSE reservation problem. Our formulation can accommo-
date multiple parking locations, limited resource capacities,
operational costs, as well as variable arrival patterns. With
this problem formulation, the parking facility management
can optimize for behind-the-meter solar integration and re-
duce costs due to procuring electricity from the grid. We
utilized an online auction mechanism to approximate the
EVSE reservation problem’s solution and we analyzed the
performance compared to the offline solution. We provided
a numerical simulation to validate the performance of the
EVSE reservation system in a downtown district with multi-
ple parking locations equipped with EVSEs. In future work,
we will analyze the effects of varying levels of infrastructure
investments for various locations. Additionally, we will study
other smart charging benefits such as frequency regulation
services or participation in demand response for parking
infrastructure utilizing smart assignment mechanisms.
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