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Abstract—In this paper, we study the potential benefits from
smart charging for a fleet of electric vehicles (EVs) providing
autonomous mobility-on-demand (AMoD) services. We first
consider a profit-maximizing platform operator who makes
decisions for routing, charging, rebalancing, and pricing for
rides based on a network flow model. Clearly, each of these
decisions directly influence the fleet’s smart charging potential;
however, it is not possible to directly characterize the effects of
various system parameters on smart charging under a classical
network flow model. As such, we propose a modeling variation
that allows us to decouple the charging and routing problems
faced by the operator. This variation allows us to provide closed-
form mathematical expressions relating the charging costs to
the maximum battery capacity of the vehicles as well as the
fleet operational costs. We show that investing in larger battery
capacities and operating more vehicles for rebalancing reduces
the charging costs, while increasing the fleet operational costs.
Hence, we study the trade-off the operator faces, analyze the
minimum cost fleet charging strategy, and provide numerical
results illustrating the smart charging benefits to the operator.

I. INTRODUCTION

The increasing popularity of mobility-on-demand plat-
forms, the rapid developments in autonomous driving tech-
nology, and the increasing adoption rate of EVs are disruptive
technologies that are extensively altering society’s perspective
of urban mobility. Given this, the vision of an electric and
autonomous mobility-on-demand (AMoD) fleet serving urban
customers’ mobility needs is gaining traction within the
transportation industry, with multiple companies now heavily
investing in AMoD technology [1].

In conjunction with society’s interest in AMoD technolo-
gies, there is extensive literature emerging that studies the
different aspects of AMoD systems. The potential impact
of shared mobility services on daily urban mobility [2],
the analysis of AMoD systems with realistic demand [3],
autonomous vehicle behavior in existing traffic models [4],
and rebalancing algorithms [5] have been investigated us-
ing simulation frameworks. The interplay between AMoD
and public transport has been studied in [6] and [7]. On
the modeling side, queueing theoretical models capture the
stochasticity of the customers [8], while network flow models
efficiently optimize the fleet control in a static setting [9].
Owing to their simplicity, network flow based formulations
are commonly used for algorithmic control of routing and
rebalancing in a receding-horizon fashion [10], and to control
congestion effects [11].

In addition to AMoD technology, the transportation sector
is looking to increase utilization of electric vehicles (EVs) for
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consumers, companies, and fleet operations. Specifically, EV
employment in mobility-on-demand (MoD) systems such as
taxi environments has been studied in [12] and [13]. The
authors of [14] study scheduling algorithms for assigning
MoD EVs to trips. To address the issue of EVs’ need to
perform in-route charging, [15] proposes a routing scheme
that aims to reduce overall delays. As EVs could also be
autonomous, the authors of [16] study an agent-based model
to simulate the operations of an AMoD fleet of EVs under
various vehicle and infrastructure scenarios. Possible issues
such as communication delays and instability during charging
process arising from occupying EVs in an AMoD system are
investigated in [17]. As these fleets can be used to assist
other means of transportation, [18] discusses the potential
of using AMoD as a last mile connection of train trips.
Additionally, the authors of [19] analyze the interaction
between EV AMoD systems and power grid due to the
charging requirements of EVs.

In this paper, our main goal is to quantify the decreased
charging costs from utilizing smart charging as an EV AMoD
fleet transports customers between various locations. Specif-
ically, smart charging refers to the practice of charging EVs
opportunistically at times and locations at which electricity
is inexpensive and the power grid is under less stress. We
adopt a model that considers a profit-maximizing AMoD
platform that is transporting customers over a static and
simplified network. We assume that the platform operator
optimizes vehicle charging and rebalancing decisions, as well
as customer payments for rides, by considering the diversity
of electricity prices at different network nodes. Exploiting the
diversity in electricity prices leads to an EV smart charging
plan in the context of AMoD systems. Moreover, our goal is
to study the effects of various system parameters on the cost
savings that smart charging can provide.

We adopt an abstract network flow-based formulation and
focus on the impacts of two critical factors on the charging
costs: (i) the EV battery capacity; (ii) the per-vehicle opera-
tional costs (and implicitly, the fleet size). Accordingly, we
analyze optimal routing, pricing, charging, and rebalancing
strategies for the flow-based formulation. Then, in order to
quantify the importance of battery capacity and operational
costs on the smart charging potential of AMoD fleets, we
adopt a modeling variation that decouples charging decisions
from routing decisions, hence allowing us to obtain closed-
form expressions for the trade-offs that are of interest to us.
While it is evident that the closed-form relationships are only
valid for our abstract model, they highlight important design
choices for any AMoD system utilizing EVs.



Organization: The remainder of the paper is structured as
follows: Section II presents the system model and describes
the platform operator’s optimization problem. In Section III,
we formulate the optimization problem using a network flow
approach and discuss the effects of fleet operational and
charging costs on profits. Section IV proposes a modeling
variation in order to mathematically characterize smart charg-
ing benefits. Section V presents numerical results quantifying
the smart charging benefits.

II. SYSTEM MODEL

Network and Demand Models: We consider a fleet of
AMoD EVs operating within a transportation network that
is a fully connected graph consisting of M = {1, . . . ,m}
equidistant nodes that can each serve as a trip origin or
destination1. We adopt the static model studied in [20] for the
customers’ transportation demand. We assume that potential
customers arrive at node i at a rate of θi per period. The
routing matrix A = [αij ]i,j∈M defines the fractions αij of
riders at node i who wish to go to node j, with αii = 0,
αij ≥ 0, and

∑
j∈M αij = 1. Moreover, we assume that

these riders are heterogeneous in terms of their willingness
to pay. In particular, if the price for receiving a ride from
node i is set to `i, the induced demand for rides from i to j
at each time period is given by Λij = θiαij(1−F (`i)), where
F (·) is the cumulative distribution of riders’ willingness to
pay with a support of [0, `max]. We note that the price of rides
is only dependent on their origin; however, an extension to
origin-destination (O-D) based prices is straightforward.

Vehicle Model: To capture the effect of trip demand and
the associated charging, routing, and rebalancing decisions
on the fleet size, we assume that each autonomous vehicle in
the fleet has a per period operational cost of β. As such, we
make no explicit assumption on fleet size; rather, our cost
model implicitly optimizes the fleet size given the system
parameters. Furthermore, as the vehicles are electric, they
have to sustain charge in order to operate. We assume there
is a charging station placed at each node m ∈ M. To
charge at node i, the operator pays a price of electricity
pi per unit of energy. We assume that all EVs in the fleet
have a battery capacity denoted as vmax ∈ Z+; therefore,
each EV has a discrete battery energy level v ∈ V , where
V = {v ∈ N|0 ≤ v ≤ vmax}. In our discrete-time model,
we assume each vehicle takes one period to charge one unit
of energy. Given that all O-D pairs are considered to be
equidistant, we assume each trip takes τ periods of time to
complete and consumes one unit of energy1.

Rebalancing: In addition to routing and charging the vehi-
cles, the fleet operator can also utilize vehicles for rebalanc-
ing. Specifically, these are vehicles that are traveling between
different nodes in the network without carrying passengers.
Rebalancing vehicles are required for the platform to serve
the induced outgoing demand at a node if said demand

1Most of our results can be extended to the more general case with
nodes being geographically distributed on a network and hence different
trips taking different amounts of energy and time. For brevity of notation
we use equidistant nodes in this paper.

exceeds the incoming trip demand with that node as the
destination. Moreover, as we emphasize in the following
sections, rebalancing trips can also be useful for lowering
the platform’s charging costs. Thus, in our model, even
with a completely balanced trip pattern (i.e., the induced
demand being equal to the incoming demand at each node),
rebalancing vehicles may still be employed by the operator.

Platform Operator’s Problem: We consider a profit-
maximizing AMoD operator that manages a fleet of EVs that
make trips to provide transportation services to customers.
The operator’s goal is to maximize profits by 1) setting
prices for rides and hence managing customer demand at
each node; 2) optimally operating the AMoD fleet (i.e.,
charging, routing, and rebalancing) to minimize operational
and charging costs.

III. NETWORK FLOW FORMULATION AND MARGINAL
PRICES

A. Network Flow Model

In this section, we approach the platform’s optimization
problem via a network flow model. Specifically, let `i be the
price for rides originating from node i, xvi the number of
vehicles with battery energy level v charging at node i, xvij
the number of vehicles starting with a battery energy level v
and transporting a passenger from node i to j, and rvij the
number of rebalancing vehicles starting with a battery energy
level v and making a trip from node i to j. The platform
operator aims to set `i, xvi , xvij , and rvij in order to maximize
profits P . Namely, the operator’s problem can be stated as:

max
xv
i ,x

v
ij ,r

v
ij ,`i

m∑
i=1

`iθi(1− F (`i))−
m∑
i=1

vmax−1∑
v=0

(β + pi)x
v
i

− τβ
m∑
i=1

m∑
j=1

vmax∑
v=1

(rvij + xvij)

subject to
vmax∑
v=1

xvij = θi(1− F (`i))αij ∀i, j ∈M,

xvi +

m∑
j=1

(xvij + rvij) =

xv−1i +

m∑
j=1

(xv+1
ji + rv+1

ji ) ∀i ∈M, ∀v ∈ V,

xvi ≥ 0, xvij ≥ 0, rvij ≥ 0 ∀i, j ∈M, ∀v ∈ V.
(1)

The first term in the objective function in (1) accounts for
the aggregate revenue the platform generates by providing
rides for θi(1 − F (`i)) number of riders with a price of
`i. The second term is the operational and charging costs
incurred by the charging vehicles, and the last term is
the operational costs of the trip-making vehicles (including
rebalancing trips). The first constraint requires the platform to
serve all the induced demand between any two nodes i and j.
We will refer to this as a the demand satisfaction constraint.
The second constraint is the flow balance constraint for each
node and each battery energy level.

The optimization problem in (1) is non-convex for a



general F (·). Nonetheless, when the platform’s profits are
affine in the induced demand θi(1−F (·)), it can be rewritten
as a convex optimization problem. Hence, we assume that the
rider’s willingness to pay is uniformly distributed in [0, `max],
i.e., F (`i) = `i

`max
.

B. Marginal Pricing
The optimal prices `∗i are related to the operational and

charging costs associated with making a trip out of node i.
The next proposition highlights this relationship.

Proposition 1. Let λ∗ij be optimal the dual variable cor-
responding to the demand satisfaction constraint for trips
originating at node i and ending in node j. The optimal
prices `∗i for rides originating at node i are:

`∗i =
`max +

∑m
j=1 λ

∗
ijαij

2
. (2)

These prices can be upper bounded by:

`∗i ≤
`max + pi +

∑m
j=1 αijpj + (2 + 2τ)β

2
. (3)

Moreover, with these optimal prices `∗i , the profits generated
per period is:

P =

m∑
i=1

θi
`max

(`max − `∗i )2. (4)

The dual variables λ∗ij , could be interpreted as the cost
of providing a single ride between i and j to the platform.
In the worst case scenario, every single requested ride from
node i requires rebalancing and charging both at the origin
and the destination. Hence the upper bound (3) includes the
price of electricity at the trip origin (to charge the rebalancing
vehicle), the average price of electricity at the destination and
the operational cost of 4 vehicles, 2 of which are used for
trips and 2 for charging.

C. Smart Charging Benefits
The cost λ∗ij of providing a single ride between nodes

i, j ∈ M is fundamental to the operations of the AMoD
system. Consider the results presented in Proposition 1.
We can observe that the platform profit P is lowered as
the additional cost term

∑m
j=1 λ

∗
ijαij in (2) increases. This

additional term
∑m
j=1 λ

∗
ijαij , which is the average marginal

cost of a single ride out of node i, could be interpreted
as taxes applied on products, which is shared among the
supplier and the consumer in a basic supply-demand setting.
In the AMoD system, the cost is shared equally among the
platform operator and the riders, which results in a decrease
in both profits and consumer surplus. To decrease this loss,
the platform operator acts in order to decrease the total cost of
operation (i.e., charging and fleet operational costs) via smart
charging and routing strategies. Our goal is to specifically
study how smart charging strategies can aid the operator in
decreasing the costs of rides. The potential of smart charging
strategies for reducing costs clearly depends on the battery
capacity vmax and the operational cost parameter β.

Let us elaborate further. A smart charging strategy allows
the vehicles to avoid charging at expensive nodes and charge
as much as they can once they arrive at a cheap node.
The lower the battery capacity vmax is, the less likely it is

for a vehicle to visit nodes with cheaper electricity prices
before running out of charge. Alternatively, a large enough
battery capacity vmax allows the operator to solely charge
the vehicles at cheap nodes, resulting in a low electricity
cost. In a similar manner, a rebalancing trip to a cheaper
node (As mentioned in Section II, rebalancing can also be
done solely for charging purposes.) could decrease the total
costs, even though it increases the fleet operational costs.
As an example, consider the following setting: Let’s assume
that, unless rebalancing is allowed, the optimal strategy for
a vehicle at node i with pi = 3 is to charge for one unit of
energy. There is another node j, with pj = 0.5. Let β = 0.02
and τ = 10. Then, instead of paying pi+β = 3.02 to charge
for a single unit of energy at node i, this vehicle should visit
node j, charge for 3 units and then come back to node i for a
total cost of 3β+2τβ+3pj = 1.96. Clearly, the profitability
of such rebalancing trips depends on the value of β.

This network flow model accounts for all the phenomena
mentioned above. Yet it is not possible to explicitly character-
ize the benefits of employing smart charging strategies alone
on reducing the cost of rides between nodes i and j. This is
because we cannot explicitly state the relationship between
the dual multipliers λ∗ij of the optimization problem (1) with
the demand’s willingness to pay characterized by F (·), the
potential demand θi, the routing matrix A, the electricity
prices, as well as our parameters of interest, vmax and β.
Hence, while we will numerically study this interconnection
and its effects on the platform’s profit in Section V, we
would like to propose a variation of the same flow model that
enables us to decouple the effects of the network parameters
θi, F (·) and A from the optimal charging strategy and allows
us to provide explicit relationships between the cost-savings
due to smart charging and our parameters of interest, namely
the electricity price diversity in the network, battery capacity
vmax and the fleet operational cost parameter β.

IV. SMART CHARGING BENEFITS WITH RANDOM PRICES

In this section, we propose a variation of the network flow
model that allows us to explicitly characterize the relationship
between optimal charging cost incurred for each individual
trip as a function of the vehicles’ battery capacity vmax and
the fleet operational cost parameter β. This can highlight an
important planning trade-off that an AMoD operator faces:
by investing in a larger fleet or in vehicles with larger battery
capacities, the day-to-day costs of the operator can decrease.

Specifically, from now on, we will assume that for the
purposes of planning, the operator considers the prices of
electricity that a vehicle can see at all nodes except the
current node they are located at to be iid random variables
sampled from a continuous distribution fP (p) with support
[pmin, pmax]. However, the price of electricity at the current
node will be considered known and constant for the duration
of charge events once it is observed. This can be justified if
the prices are strict sense stationary random processes with
little correlation given time lags of order τ . Such random
price models can have real-world applications given the
introduction of high levels of renewable energy in the power



grid, which makes electricity prices harder to forecast on a
day by day basis.

Hence, while we retain all the elements of our static
flow model, we assume that the electricity prices at the
destination nodes of all current trips is unknown to the
operator at the time the optimization problem (1) is solved.
This assumption effectively decouples the network operator’s
decision problem into two independent components:

1) that of deciding whether to charge a vehicle with
battery energy level v if it is currently located at a
node with electricity price p. By solving for the optimal
charging strategy in this stochastic setting, we can
characterize the average charging cost pavg that must
be paid for each trip by each vehicle;

2) that of deciding the optimal price to charge for rides at
each node i and the rebalancing trips performed in a
non-electric AMoD system to ensure network balance
between supply and demand at each node. This is
essentially equivalent to solving problem (1) with all
pi’s set to a constant pavg given by the first problem.

This form of stochasticity in the prices mean that the
vehicles’ charging strategy would now solely depend on their
current state of charge (SoC) and current price tuple (v, p)
(as opposed to the network flow model). This is a natural
consequence of the fact that charging decisions are entirely
independent of where the vehicle will be sent to next, since
the prices of electricity at all possible destinations the vehicle
might be routed to is unknown to the operator. As a result,
the solution of the first problem yields an average charging
cost for every vehicle in the network.
A. The Optimal Charging Strategy under Random Prices

In this section, we develop an optimal charging strategy
under the random price model. The decision of whether to
charge or not solely depends on the vehicle’s current SoC
v and the electricity price observed at the current node
p. Hence, we define the optimal charging policy µ as a
collection of sets Pv, v = 0, . . . , vmax−1. The prices p ∈ Pv
are those at which it is optimal for a vehicle with battery
energy level v to charge for one unit. If the price of the
current node does not fall in Pv , the vehicle will not charge
and will instead travel to the next node (as long as v ≥ 1).

Our goal is to determine the policy µ that minimizes
average charging cost and subsequently, use this analysis to
study the effect of the vehicles’ battery capacity and the fleet
operational cost parameter β on the average charging cost.

Lemma 1. Under the optimal policy, we have:
Pv = {p|p ∈ [pmin, Cv(µ)]}, (5)

where Cv(µ) is the expected price of the next unit of energy
under the policy µ if leaving the current node with a battery
energy level v.

The proof simply follows from the Bellman equation
considering the fact that C0(µ) = ∞ under any policy µ.
Essentially, to make the charging decision, a comparison of
the price of electricity at the current node and the expected
price to be paid for the next unit of energy if the vehicle

leaves the current node has to be made. If the current price
is less than the expected price, the decision is to charge. Else,
the vehicle does not charge and leaves the node. Hence,

Cv(µ) = P (p < Cv−1(µ))E[p|p < Cv−1(µ)]

+ P (p ≥ Cv−1(µ))Cv−1(µ), ∀v ≥ 1. (6)
The optimal policy results in a threshold price Cv(µ) for
each battery energy level v, which is the maximum price the
platform operator is willing to pay for one unit of energy for
a vehicle with battery energy level v.

Let us denote the state of each EV using the tuple (v, p).
Following the optimal policy, an EV with state (v, p) takes
an action to charge or travel, and transitions to a new state:
• (v + 1, p) if charging.
• (v − 1, p′) if traveling, with p′ sampled from fP (p).

Hence, the vehicle’s charging decision process allows us to
model the state of the vehicle as a Markov chain on the state
space (v, p), converging to a stationary distribution d(v, p)2.
Note that the marginal distribution of prices observed under
the stationary case is different from fP (p) as the vehicle
might charge for more than one unit at a cheaper node and
hence observing cheaper prices becomes more likely. Using
the stationary distribution, the average charging cost per trip
under the optimal policy µ can be written as:

pavg(µ) =

vmax−1∑
v′=0

Pc(v = v′)Ed(·)[p|p < Cv′(µ), v = v′],

(7)
where we define Pc(v = v′) as the probability that a charging
vehicle has SoC v′. The average price paid for a charging
vehicle with SoC v′ is calculated by the expected value of
prices observed by the vehicle in the stationary distribution.
Furthermore, we can explicitly write down the terms in (7):

Pc(v = v′) =

∫ Cv′ (µ)

pmin
d(v′, p) dp∑vmax−1

v=0

∫ Cv(µ)

pmin
d(v, p) dp

=

∫ Cv′ (µ)

pmin
d(v′, p) dp
1

1+τ

,

(8)

Ed(·)[p|p < Cv′(µ), v = v′] =

∫ Cv′ (µ)

pmin
p d(v′, p) dp∫ Cv′ (µ)

pmin
d(v′, p) dp

. (9)

The second equality in (8) follows from the fact that the
trips take τ periods while charging takes one period. Hence,
the probability that a vehicle is charging in the stationary
distribution has to be 1

1+τ . Consequently, we get:

pavg(µ) = (1 + τ)

vmax−1∑
v′=0

∫ Cv′ (µ)

pmin

p d(v′, p) dp. (10)

For brevity of notation, we drop the dependence of the
variables on µ from now on.
B. Average Charging Cost

In this section, we determine the average charging cost
per vehicle pavg under the optimal charging strategy. In

2This Markov chain as we have defined it has a mix of continuous
and discrete states, and it is straightforward to show that it satisfies the
conditions for the existence of a unique stationary distribution. We remove
the discussion for brevity and refer the reader to [21].



order to do this, first, we need to characterize the stationary
distribution d(v, p). At a given battery energy level v, d(v, p)
has to satisfy the following balance condition:

d(v, p) = d(v−1, p)u(Cv−1−p)+fP (p)

∫ pmax

Cv+1

d(v+1, p) dp,

(11)
where u(·) is the unit-step function. The first term of summa-
tion corresponds to the vehicles that have made a charging
decision at battery energy level v − 1 and stayed at the
same node, and the second term corresponds to the vehicles
that have not charged at battery energy level v + 1 and are
randomly being distributed over prices after completing a trip.

In general, it is not possible to write down the aver-
age charging cost for any price distribution fP (p), because
d(v, p) can not be written in closed-form. To get closed-form
results, we will make the following assumption:

Assumption 1. The prices are uniformly distributed in
[pmin, pmax]. fP (p) = 1

pmin−pmax
, pmin ≤ p ≤ pmax.

In this case, Cv is given by:

Cv = η − (pmax − Cv−1)2

2(pmax − pmin)
, ∀ v ≥ 2, (12)

with C1 = η = pmin+pmax

2 . It is straightforward to go from
(6) to (12) through simple probabilistic calculations. When
Assumption 1 holds, d(v, p) becomes constant in the region
of interest [pmin, Cv]. As a consequence, the integral in (10)
can be calculated, and thus the average charging cost pavg .

Proposition 2. When electricity prices follow Assumption 1,
pavg = Cvmax . (13)

According to the definition of Cvmax
, if we let a vehicle

leave a node with energy level vmax, it is going to pay
an expected price of Cvmax the next time it charges. On
the other hand, Proposition 2 provides a stronger statement.
If we let a vehicle with energy level vmax keep making
trips and follow the optimal charging strategy, the average
price paid for the electricity is still Cvmax

. As a result, it
is rather straightforward to show: 1) The average charging
cost pavg is a strictly decreasing function of vmax; 2) As
vmax goes to infinity, pavg goes to pmin. Seeing as pavg
has these properties, the platform operator faces a trade-off
between decreasing its charging costs by investing in vehicles
with larger battery capacity or decreasing its investment and
operational costs by operating vehicles with smaller batteries.
This is the trade-off we study next.

C. Trade-Off Between Operational and Charging Costs

In this section, we propose an approach to choose the opti-
mal battery capacity vmax and characterize pavg arising from
this choice of battery capacity. To assign a cost to the choice
of battery capacity, we make the following assumption:

Assumption 2. The normalized (per period) cost of operat-
ing vehicles with battery capacity vmax is an affine function
given by β = β0 + ξvmax.

With this assumption, we are essentially breaking down
the operational costs β into two components: 1) β0, a fixed

cost to operate the vehicles which could represent mileage
and maintenance costs, and 2) ξvmax, the operational battery
cost that will affect our choice of vmax.

Proposition 3. For ξ ≤ pmax−pmin

8 , and given an optimal
choice of battery capacity, pavg is:

pavg =
√

2ξ(pmax − pmin) + pmin. (14)

Proof. It is optimal to increase the battery capacity up to
vmax such that Cvmax

− Cvmax+1 = ξ, because the marginal
decrease in average charging cost resulting from increasing
the battery capacity by one unit is canceled by the increased
operational costs. Substituting Cvmax+1 using (12):

∆Cvmax
= Cvmax

− Cvmax+1 =
(Cvmax

− pmin)2

2(pmax − pmin)
= ξ.

Rearranging the terms, we get (14). Note that v ≥ 1, hence
Cvmax ≤

pmax+pmin

2 . This results in the constraint for ξ.

The constraint on ξ suggests that, if the cost of increasing
the battery capacity for one unit is larger than pmax−pmin

8 , then
it is not beneficial to increase the battery capacity beyond
vmax = 1, because the operational costs exceed the benefits.
Note that Proposition 3 assumes that battery capacity units
are small enough that we can always solve ∆Cvmax = ξ.

Proposition 3 gives us a direct relationship between battery
cost and pavg under the random price model. We can see that
pavg is also dependent on pmax − pmin, which is a measure
for the variance of the prices.

Corollary 3.1. Let the mean of the prices be fixed at η.
Then, as the standard deviation σ of the prices increases,
pavg decreases.

Corollary 3.1 signifies the benefits of smart charging
strategies. Specifically, when the deviation of the prices
are higher around the same mean, the platform’s optimal
charging strategy results in even lower costs, as the vehicles
can reap the benefits of the lower prices that are more likely
to be observed while avoiding the higher spectrum of prices.

So far, we have assumed that vehicles can only decide
to charge at the destination node of their trips, and hence,
we have not considered the possibility of rebalancing trips
aiding the operator in decreasing the charging costs. Unlike
the network flow model, the random price model introduced
so far does not allow the operator to perform rebalancing to
avoid charging at expensive nodes (as prices would be iid
random after the rebalancing trip). As such, we introduce
a variation that allows the operator to perform rebalancing.
Specifically, we assume that there exists a node s outside of
the network where the price for electricity ps is deterministic
and known to the operator, with ps ≤ pmin. For ease of
analysis, we consider the node to still be equidistant from
all other nodes. This could represent a node equipped with
renewable energy resources and storage devices, where cheap
energy can be stored and later delivered to the vehicles.
Naturally, since ps ≤ pmin, any vehicle visiting s charges
to full. However, even though node s provides cheap elec-
tricity, the rebalancing trips increase the operational costs
(parameterized by β). Similar to the battery capacity-charging



Fig. 1: (a) Profits and prices for rides as a function of vmax, (b) Number of rebalancing vehicles (normalized per trip) employed
as a function of vmax, (c) Comparison of approximate and exact solutions for average charging cost with rebalancing in the
random price model for vmax = 9.

costs trade-off highlighted in Proposition 3, a trade-off occurs
between decreasing the charging costs and decreasing the
operational costs due to higher number of trips. Given this
modeling variation, our goal is to obtain the average charging
cost and the additional rebalancing costs for traveling to node
s incurred by each vehicle under the optimal strategy. In
general it is not possible to write down the average cost of
charging and rebalancing per vehicle (denoted as pravg) in
closed-form. Nonetheless, we generate approximate results.

Proposition 4. Let pavg be the average charging cost without
rebalancing for a battery capacity vmax. For vmax ≥ 3,
pmin ≤ b ≤ (2pavg − pmin):

pravg ≈ b−
(b− pmin)2

4(pavg − pmin)
, (15)

where b = 2
vmax−2 ((1 + τ)β + ps) + ps.

The constraint on vmax is to provide the appropriate
setting for rebalancing, considering the rebalancing trip itself
consumes 2 units energy. The term 2

vmax−2 ((1 + τ)β + ps)
illustrates the overhead the rebalancing trip causes in order to
charge for one unit of energy at node s, and the additive ps is
the price of electricity for one unit of energy. We refer to b as
the rebalancing cost. In addition, pravg is always less than or
equal to b, with equality if the constraint on b achieves lower
bound (in which case all the vehicles are sent for charging at
node s). Moreover, the average cost with rebalancing is less
than pavg . Observe that the cost function is monotonically
increasing in b, and equals to pavg at the upper bound.

The amount of overhead caused is directly proportional to
1

vmax−2 . Hence, the costs are decreasing as vmax increases,
which indicates the importance of the battery capacity in
rebalancing as well.

To conclude, although the results are approximate, they
provide interesting insights on the benefits of rebalancing
trips for charging. In Section V, we will study the quality
of the approximations used in Proposition 4 numerically.

V. NUMERICAL RESULTS

In this section, we provide numerical results for the opti-
mization problem in (1) and the approximation in Proposition
4. For our analysis, we consider one unit of energy as
described in the paper to be 10 kWh, and the operational

battery cost per unit of energy, denoted as ξ, to be $0.003
per period (normalized over 8 years) [22]. Moreover, each 6
minutes is considered as a discrete time unit [23] (i.e., it takes
the EVs 6 minutes to charge for 10kWh). The operational cost
per period an EV is β0 = $0.1 per period for a Tesla Model
S [24](normalized over 8 years). Price of electricity per unit
of energy (10kWh) ranges from $0.8 to $3 [25], ps = $0.6
and riders’ maximum willingness to pay `max = $40. The
duration of trips is assumed to take τ = 10 time periods.

For the optimization problem in (1), we use m = 10 nodes
with prices for electricity sampled from a uniform distribution
in [0.8, 3]. The problem was solved for 300 randomly created
networks and the results were averaged. Figure 1.a illustrates
the profits and prices for rides originating from each node
(The error bars indicate the maximum and the minimum
profits out of 300 networks). Observe that the profits are in-
creasing until vmax = 7. However, since the marginal profits
gained by increasing vmax by one are decreasing, investing in
a battery capacity larger than 7 causes the operational costs
to dominate and hence the profits to decrease. Furthermore,
the prices for rides display a decreasing behaviour as profits
increase. However, it is interesting to note that the prices for
rides at some nodes increase in the optimal solution as vmax
approaches its optimal value, because the globally optimal
routing and charging strategy in the most general network
flow model is different for each vmax, and hence might
increase the costs of rides originating from certain nodes.

Figure 1.b highlights the importance of rebalancing vehi-
cles. As vmax increases up to its maximum of 7, the number
of rebalancing vehicles employed per ride increases. Even
though this increases the operational costs, their use for
charging purposes decreases the total costs and thus increases
the profits. As vmax increases beyond optimum, growing
operational costs result in less rebalancing vehicles employed.

Finally, in Figure 1.c we plot the total average cost per
vehicle versus the proportion of vehicles charging at node s.
With optimal rebalancing, the average costs can be reduced
substantially (from 1.13 to 1.06, around 6%). Observe that
the approximate solution given by Proposition 4 and exact
solution show very little error, which displays the fairness of
our approximation.



VI. CONCLUSION

In this paper, we presented the benefits of smart charging
in an AMoD fleet of EVs controlled by a profit-maximizing
platform operator. By first showing that the profits generated
are highly dependent on the charging and operational costs
the rides incur, we proposed a smart charging strategy in
order to minimize these costs. We show that investing in
a larger battery and utilizing more vehicles for rebalancing
decrease the charging costs. However, due to the diminishing
returns and increasing operational costs, there exists an
optimal number of vehicles to operate for rebalancing and
an optimal battery capacity to invest in. Aside from the nu-
merical studies that support our claims, we provided closed-
form expressions for the average charging cost under optimal
investment decisions, which we believe provide insights for
design specifications and operating strategies that are crucial
in an EV AMoD system.
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APPENDIX

A. Proof of Proposition 1
Proof. Let νvi be dual variables corresponding to the equilib-
rium flow constraints and λij be dual variables corresponding
to the demand satisfaction constraints. Since the optimization
problem (1) is a convex quadratic maximization problem
(given a with uniform F (·)) and Slater’s condition is satisfied,
strong duality holds. We can write the dual problem as:

min
λij ,νv

i

max
`i

m∑
i=1

θi(1− `i
`max

)

`i − m∑
j=1

λijαij


subject to νvi − νv+1

i − pi − β ≤ 0,

λij + νvi − νv−1j − τβ ≤ 0,

νvi − νv−1j − τβ ≤ 0 ∀i, j, v.
(16)

For fixed λij and νvi , the inner maximization results in the
optimal prices:

`∗i =
`max +

∑m
j=1 λijαij

2
. (17)

By strong duality, the optimal primal solution satisfies the
dual solution with optimal dual variables λ∗ij , ν

v
i
∗, which

completes the first part of the proposition. The dual problem
with optimal prices in (17) can be written as:

min
λij ,νv

i

m∑
i=1

θi

(
`max −

∑m
j=1 λijαij

2

)2

subject to νvi − νv+1
i − pi − β ≤ 0,

λij + νvi − νv−1j − τβ ≤ 0,

νvi − νv−1j − τβ ≤ 0 ∀i, j, v.

(18)

The objective function in (18) with optimal dual variables,
along with (2) suggests:

P =

m∑
i=1

θi
`max

(`max − `∗i )2,



where profits P is the value of the objective function of
both optimal and dual problems. To upper bound `∗i , we
upper bound λij using the constraints in (18). The proof is
straightforward through algebraic calculations.

B. Proof of Proposition 2
For convenience and ease of notation in our calculations,

we are going to assume C0 = pmax. This does not violate our
model, as d(0, p) is zero for p > pmax. To prove Proposition
2, we first state the following lemmas:

Lemma 2. For v = 0, d(0, p) is constant in [pmin, pmax]. For
any other v, d(v, p) is a constant denoted as d1v in the interval
[pmin, Cv−1), and another constant d2v in [Cv−1, pmax].

The lemma simply follows from the balance condition
(11). We exclude the proof for brevity.

When we have the proposed characteristic of the
stationary distribution, the recursive relation between d(v, p)
and d(v − 1, p) can be written as follows based on (11): d1v

d2v

 =

pmax−Cv−1

pmax−Cv

pmax−pmin

pmax−Cv

Cv−Cv−1

pmax−Cv

pmax−pmin

pmax−Cv


 d1v−1

d2v−1

 ,
∀v ≥ 1 and d10 = d20 = d0.

(19)

To get the average charging cost, we are solely interested in
the values of the d1v’s, because charging is done in the range
[pmin, Cv). Another way of writing a relation between the
stationary distributions is as follows:

Lemma 3. d1v = pmax−pmin

pmax−Cv
d1v−1.

Proof. Equation (19) yields d2v−1 = d1v−1−d1v−2. Hence, by
substituting d2v−1 with this, we get:

d1v =
1

pmax − Cv
[(pmax − Cv−1)d1v−1

+ (pmax − pmin)d1v−1 − (pmax − pmin)d1v−2]. (20)
By induction, if Lemma 3 holds for d1v−1, then it holds for d1v ,
since the first and the last terms inside square brackets cancel
each other. For v = 1, the lemma holds since (20) gives
(pmax − C1)d11 = (pmax − pmin)d10, because d10 = d20.

Finally, we can prove Proposition 2:

Proof. Using Lemma 3, for any v, d1v is given by:

d1v = d0

v∏
i=1

pmax − pmin

pmax − Ci
. (21)

This allows us to write d1v’s and d2v’s in terms of d0. More-
over, since d(v, p) is the distribution of a vehicle, integration
over p and summation over v should be equal to 1. This
normalization yields:

d10 = d20 = d0 =

∏vmax−1
i=1 (pmax − Ci)

(1 + τ)(pmax − pmin)vmax
. (22)

The final step to get the average charging cost per vehicle
is to use (10) for uniformly distributed prices. The equation
takes the following form:

pavg = (1 + τ)

vmax−1∑
v=0

d1v
C2
v − p2min

2
. (23)

Substituting (21) and (22) into (23):

pavg =

vmax−1∑
v=0

C2
v − p2min

2
·
∏vmax−1
i=v+1 (pmax − Ci)

(pmax − pmin)vmax−v
. (24)

If we write down (6) explicitly for uniform distribution and
v = vmax, we get:

Cvmax
=
C2
vmax−1 − p

2
min

2
· 1

pmax − pmin

+
pmax − Cvmax−1

pmax − pmin
· [Cvmax−1] .

Next, by writing Cvmax−1 in curly brackets explicitly in terms
of Cvmax−2, and then further applying this method until C0,
we get the same expression as in (24).

C. Proof of Corollary 3.1
The proof simply follows from writing pavg in (14) in

terms of η and σ, taking derivative with respective to σ, and
applying the upper bound on ξ. We omit the proof for brevity.
D. Proof of Proposition 4

First, we need to prove the following lemma:

Lemma 4. The rebalancing trips are only made by vehicles
with battery energy level v = 1.

Proof. It is optimal for the platform operator to first send
vehicles with state v = 1 for rebalancing, as they would end
up paying the highest expected price for electricity at v = 0
state. Let γ be the portion of the vehicles with state v = 1
sent for rebalancing. The expected cost of the next charge is
modified as:

C1(γ) = (1− γ)η + γCvmax
(γ) (25)

When γ = 1, Cv = pmin for all v as the recursion in (12)
suggests. Hence, no vehicle charges at regular nodes.

In general, we can not characterize Cvmax
(γ) in closed-

form. Instead, we consider the proportion of the charging
vehicles remaining at regular nodes (excluding the overhead
caused by rebalancing), denoted by n, and approximate the
behaviour of Cvmax linearly with n:

Cvmax
(n) ≈ pmin + n(pavg − pmin). (26)

Note that γ = 1 corresponds to n = 0 and γ = 0
corresponds to n = 1, hence the endpoints are satisfied. The
total rebalancing and charging costs the platform incurs:

pravg ≈ n(pmin + n(pavg − pmin)) + (1− n)b, (27)
where b = 2

vmax−2 ((1+τ)β+ps)+ps. Since 2 units of energy
is wasted for the trips caused by the rebalancing vehicles,

2
vmax−2 ((1 + τ)β + ps) corresponds to the overhead induced
by rebalancing. Specifically, to provide vmax − 2 units of
energy at node s, an excess cost of 2ps to charge for the
rebalancing trips and (2 + 2τ)β to operate the charging and
traveling vehicles has to be paid.

The total average cost is a weighted average of charging
costs at regular nodes and cost of rebalancing. The minimum
of pravg follows from minimizing (26) with respect to n.


