Online Optimization and Learning for Sustainable Human-Cyber-Physical Systems

Nathaniel Tucker

Wednesday, November 18, 2020

By 2040, electric cars could outsell gasoline-powered cars

Over the next two decades, sales of electric cars may begin to outstrip global sales of internal combustion cars.

Transportation Electrification

By 2040, electric cars could outsell gasoline-powered cars

Over the next two decades, sales of electric cars may begin to outstrip global sales of internal combustion cars.

Transportation Electrification

- Infrastructure management
- Effects on the grid

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

By 2040, electric cars could outsell gasoline-powered cars

Over the next two decades, sales of electric cars may begin to outstrip global sales of internal combustion cars.

Power transmission Smart homes Solar powe Electric vehicles Power generation Wind powe Grid monitoring

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

- New flexible loads
- Increased renewables

By 2040, electric cars could outsell gasoline-powered cars

Transportation Electrification

- Infrastructure management
- Effects on the grid

Grid Modernization

Wind powe

- New flexible loads
- Increased renewables

Solar pow

Power generation

Grid monitoring

Both can benefit from optimization and learning mechanisms

Timeline

Timeline

Timeline

Part 1

An Online Admission Control Mechanism for Electric Vehicles at Public Parking Infrastructures

Without smart charging:

• Resulting power demand could negatively affect the grid (i.e., high demand during peak hours)

Without smart charging:

- Resulting power demand could negatively affect the grid (i.e., high demand during peak hours)
- Cannot fully integrate renewable power generation

• Most past work on smart charging focuses on home charging

- Most past work on smart charging focuses on home charging
- But... EV owners spend much of their day away from home

- Most past work on smart charging focuses on home charging
- But... EV owners spend much of their day away from home
- Public parking facilities have unused smart charging potential

- Most past work on smart charging focuses on home charging
- But... EV owners spend much of their day away from home
- Public parking facilities have unused smart charging potential
- Can we utilize existing smart charging methods for public parking facilities equipped with chargers?

- Most past work on smart charging focuses on home charging
- But... EV owners spend much of their day away from home
- Public parking facilities have unused smart charging potential
- Can we utilize existing smart charging methods for public parking facilities equipped with chargers?

Unfortunately, no

- Public parking spots with EV chargers are shared resources
 - Conflicts over public charger usage
 - Low-priority users preventing high-priority users from charging

- Public parking spots with EV chargers are shared resources
 - Conflicts over public charger usage
 - Low-priority users preventing high-priority users from charging
- Users arrive at random times throughout the day
 - Need to allocate arrivals without knowledge of future demand

- Public parking spots with EV chargers are shared resources
 - Conflicts over public charger usage
 - Low-priority users preventing high-priority users from charging
- Users arrive at random times throughout the day
 - Need to allocate arrivals without knowledge of future demand
- Departure times not known without reservation mechanisms

- Public parking spots with EV chargers are shared resources
 - Conflicts over public charger usage
 - Low-priority users preventing high-priority users from charging
- Users arrive at random times throughout the day
 - Need to allocate arrivals without knowledge of future demand
- Departure times not known without reservation mechanisms

Require online management systems for admission decisions and shared resource allocation to enable smart charging

User Characteristics

• Users arrive throughout the day and have different preferences for parking locations (imagine a campus or a downtown area)

User Characteristics

- Users arrive throughout the day and have different preferences for parking locations (imagine a campus or a downtown area)
- Each user can be characterized by user 'type':

$$\theta_n = \{t_n^-, t_n^+, h_n, \{\ell_n\}, \{v_{n\ell}\}\} \in \Theta$$

User Characteristics

- Users arrive throughout the day and have different preferences for parking locations (imagine a campus or a downtown area)
- Each user can be characterized by user 'type':

$$\theta_n = \{t_n^-, t_n^+, h_n, \{\ell_n\}, \{v_{n\ell}\}\} \in \Theta$$

- t_n^- : User *n*'s arrival time
- t_n^+ : User *n*'s departure time
- *h_n*: User *n*'s desired energy amount
- $\{\ell_n\}$: User *n*'s preferred facilities
- $\{v_{n\ell}\}$: User *n*'s valuations for charging at each facility ℓ

Parking and Charging Reservation Options

• There are a set of options \mathcal{O}_n that fulfill user *n*'s type (θ_n) :

 $\{t_n^-, t_n^+, \{c_{no}^{m\ell}(t)\}, \{e_{no}^{m\ell}(t)\}, \{\ell_n\}, \{v_{n\ell}\}\}$

Parking and Charging Reservation Options

• There are a set of options \mathcal{O}_n that fulfill user *n*'s type (θ_n) :

 $\{t_n^-, t_n^+, \{c_{no}^{m\ell}(t)\}, \{e_{no}^{m\ell}(t)\}, \{\ell_n\}, \{\nu_{n\ell}\}\}$

- c^{mℓ}_{no}(t): Binary cable reservation; 1 if user n is assigned a cable from EVSE m at facility ℓ at time t in option o; 0 otherwise
- $e_{no}^{m\ell}(t)$: Charging schedule for user n at EVSE m at facility ℓ in option o
Parking and Charging Reservation Options

• There are a set of options \mathcal{O}_n that fulfill user *n*'s type (θ_n) :

 $\{t_n^-, t_n^+, \{c_{no}^{m\ell}(t)\}, \{e_{no}^{m\ell}(t)\}, \{\ell_n\}, \{\nu_{n\ell}\}\}$

- c^{mℓ}_{no}(t): Binary cable reservation; 1 if user n is assigned a cable from EVSE m at facility ℓ at time t in option o; 0 otherwise
- $e_{no}^{m\ell}(t)$: Charging schedule for user n at EVSE m at facility ℓ in option o
- If there were posted prices for these options, users could select their utility maximizing reservation

Figure: Facility schedule after 1 arrival.

Figure: Facility schedule after 2 arrivals.

Figure: Facility schedule after 3 arrivals.

Figure: Facility schedule after 4 arrivals.

Offline Social Welfare Maximization Problem

$$\begin{split} \max_{x} \sum_{\mathcal{N}, \mathcal{O}_{n, \mathcal{L}}, \mathcal{M}_{\ell}} v_{n\ell} x_{no}^{m\ell} &- \sum_{\mathcal{T}, \mathcal{L}} f_{g}^{\ell}(y_{g}^{\ell}(t)) \\ \text{subject to:} \\ \sum_{\mathcal{O}_{n, \mathcal{L}}, \mathcal{M}_{\ell}} x_{no}^{m\ell} &\leq 1, \quad \forall \ n \\ x_{no}^{m\ell} &\in \{0, 1\}, \quad \forall \ n, o, \ell, m \\ y_{c}^{m\ell}(t) &\leq C_{\ell}, \quad \forall \ \ell, m, t \\ y_{e}^{m\ell}(t) &\leq E_{\ell}, \quad \forall \ \ell, m, t \end{split}$$

Facilities' Electricity Costs

The energy procurement, $y_g^{\ell}(t)$, determines the operational cost of facility ℓ (i.e., purchasing electricity from the distribution grid):

$$f_g^\ell(y_g^\ell(t)) = egin{cases} 0 & y_g^\ell(t) \in [0,s_\ell(t)) \ \pi_\ell(t)(y_g^\ell(t)-s_\ell(t)) & y_g^\ell(t) \in [s_\ell(t),s_\ell(t)+G_\ell(t)] \ +\infty & y_g^\ell(t) > s_\ell(t)+G_\ell(t) \end{cases}$$

• Can examine the dual constraints:

$$u_n \ge 0$$

$$u_n \ge v_{n\ell} - \sum_{\mathcal{T}} \left(c_{no}^{m\ell}(t) p_c^{m\ell}(t) + e_{no}^{m\ell}(t) \left(p_e^{m\ell}(t) + p_g^{\ell}(t) \right) \right)$$

• Can examine the dual constraints:

$$u_n \ge 0$$

$$u_n \ge v_{n\ell} - \sum_{\mathcal{T}} \left(c_{no}^{m\ell}(t) p_c^{m\ell}(t) + e_{no}^{m\ell}(t) \left(p_e^{m\ell}(t) + p_g^{\ell}(t) \right) \right)$$

• Can instead look at the following:

$$u_{n} = \max \left\{ 0, \max_{\mathcal{O}_{n}, \mathcal{L}, \mathcal{M}_{\ell}} \left\{ v_{n\ell} - \sum_{t \in [t_{n}^{-}, t_{n}^{+}]} \left(c_{no}^{m\ell}(t) p_{c}^{m\ell}(t) + e_{no}^{m\ell}(t) (p_{e}^{m\ell}(t) + p_{g}^{\ell}(t)) \right) \right\} \right\}$$

• Can examine the dual constraints:

$$u_n \ge 0$$

$$u_n \ge v_{n\ell} - \sum_{\mathcal{T}} \left(c_{no}^{m\ell}(t) p_c^{m\ell}(t) + e_{no}^{m\ell}(t) \left(p_e^{m\ell}(t) + p_g^{\ell}(t) \right) \right)$$

• Can instead look at the following:

$$u_{n} = \max \left\{ 0, \max_{\mathcal{O}_{n}, \mathcal{L}, \mathcal{M}_{\ell}} \left\{ v_{n\ell} - \sum_{t \in [t_{n}^{-}, t_{n}^{+}]} \left(c_{no}^{m\ell}(t) p_{c}^{m\ell}(t) + e_{no}^{m\ell}(t) (p_{e}^{m\ell}(t) + p_{g}^{\ell}(t)) \right) \right\} \right\}$$

• If $u_n = 0$, user *n* does not purchase a reservation

• Can examine the dual constraints:

$$u_n \ge 0$$

$$u_n \ge v_{n\ell} - \sum_{\mathcal{T}} \left(c_{no}^{m\ell}(t) p_c^{m\ell}(t) + e_{no}^{m\ell}(t) \left(p_e^{m\ell}(t) + p_g^{\ell}(t) \right) \right)$$

• Can instead look at the following:

$$u_{n} = \max \left\{ 0, \max_{\mathcal{O}_{n}, \mathcal{L}, \mathcal{M}_{\ell}} \left\{ v_{n\ell} - \sum_{t \in [t_{n}^{-}, t_{n}^{+}]} \left(c_{no}^{m\ell}(t) p_{c}^{m\ell}(t) + e_{no}^{m\ell}(t) (p_{e}^{m\ell}(t) + p_{g}^{\ell}(t)) \right) \right\} \right\}$$

- If $u_n = 0$, user *n* does not purchase a reservation
- If u_n > 0, user n purchases their utility maximizing parking and charging reservation, and is charged the following cost:

$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^\ell(t))
ight)$$

• Can examine the dual constraints:

$$u_n \ge 0$$

$$u_n \ge v_{n\ell} - \sum_{\mathcal{T}} \left(c_{no}^{m\ell}(t) p_c^{m\ell}(t) + e_{no}^{m\ell}(t) \left(p_e^{m\ell}(t) + p_g^{\ell}(t) \right) \right)$$

• Can instead look at the following:

$$u_{n} = \max \left\{ 0, \max_{\mathcal{O}_{n}, \mathcal{L}, \mathcal{M}_{\ell}} \left\{ v_{n\ell} - \sum_{t \in [t_{n}^{-}, t_{n}^{+}]} \left(c_{no}^{m\ell}(t) p_{c}^{m\ell}(t) + e_{no}^{m\ell}(t) (p_{e}^{m\ell}(t) + p_{g}^{\ell}(t)) \right) \right\} \right\}$$

- If $u_n = 0$, user *n* does not purchase a reservation
- If u_n > 0, user n purchases their utility maximizing parking and charging reservation, and is charged the following cost:

$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

• Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging

- Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging
- Make irrevocable admission decisions in an online fashion

- Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging
- Make irrevocable admission decisions in an online fashion
- Post reservation prices, users select to maximize own utility

- Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging
- Make irrevocable admission decisions in an online fashion
- Post reservation prices, users select to maximize own utility
- Payment at the time of admission

- Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging
- Make irrevocable admission decisions in an online fashion
- Post reservation prices, users select to maximize own utility
- Payment at the time of admission
- Handle adversarial arrival sequences (due to the unpredictable arrival distributions)

- Design online reservation mechanism for public facilities equipped with shared EV chargers to enable smart charging
- Make irrevocable admission decisions in an online fashion
- Post reservation prices, users select to maximize own utility
- Payment at the time of admission
- Handle adversarial arrival sequences (due to the unpredictable arrival distributions)
- Provide performance guarantees

• Facility does not know the future arrival sequence

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

Recall:
$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

Recall:
$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

• Proposed Solution: the prices $p_c^{m\ell}(t)$, $p_e^{m\ell}(t)$, and $p_g^{\ell}(t)$ have heuristic updating functions

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

Recall:
$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

- Proposed Solution: the prices $p_c^{m\ell}(t)$, $p_e^{m\ell}(t)$, and $p_g^{\ell}(t)$ have heuristic updating functions
 - Determine the prices for the shared resources as users arrive

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

Recall:
$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

- Proposed Solution: the prices $p_c^{m\ell}(t)$, $p_e^{m\ell}(t)$, and $p_g^{\ell}(t)$ have heuristic updating functions
 - Determine the prices for the shared resources as users arrive
- We are able to provide performance guarantees for pricing functions of the following form:

- Facility does not know the future arrival sequence
- Cannot accurately select prices beforehand

Recall:
$$\hat{p}_{no}^{m\ell} = \sum_{\mathcal{T}} \left(\hat{c}_{no}^{m\ell}(t) p_c^{m\ell}(t) + \hat{e}_{no}^{m\ell}(t) (p_e^{m\ell}(t) + p_g^{\ell}(t)) \right)$$

- Proposed Solution: the prices $p_c^{m\ell}(t)$, $p_e^{m\ell}(t)$, and $p_g^{\ell}(t)$ have heuristic updating functions
 - Determine the prices for the shared resources as users arrive
- We are able to provide performance guarantees for pricing functions of the following form:

$$p_g^\ell(y_g^\ell(t)) = \left\{egin{array}{ll} \left(rac{L_g}{2R}
ight) \left(rac{2R\pi_\ell(t)}{L_g}
ight)^{rac{y_g^\ell(t)}{s_\ell(t)}} & y_g^\ell(t) < s_\ell(t) \ \left(rac{L_g - \pi_\ell(t)}{2R}
ight) \left(rac{2R(U_g - \pi_\ell(t))}{L_g - \pi_\ell(t)}
ight)^{rac{y_g^\ell(t)}{s_\ell(t) + G_\ell(t)}} + \pi_\ell(t) & y_g^\ell(t) \ge s_\ell(t) \end{array}
ight\}$$

Performance Guarantee: Competitive Ratio

• Competitive ratio:

 $\frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

Performance Guarantee: Competitive Ratio

• Competitive ratio:

 $\frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

• An online mechanism is " α -competitive" when:

 $\alpha \geq \frac{\text{Optimal Offline Solution's Social Welfare}}{\text{Worst Case[Online Mechanism's Social Welfare]}} \geq 1$

Online Reservation System Competitive Ratio

The online EV charger reservation system that makes use of our heuristic price update functions is α_1 -competitive in social welfare where

$$\alpha_1 = 2 \max_{\mathcal{L}, \mathcal{T}} \Big\{ \ln \Big(\frac{2R(U_g - \pi_\ell(t))}{L_g - \pi_\ell(t)} \Big) \Big\}.$$

• Daily solar generation forecast as a confidence interval:

$$s_\ell(t) \in [\underline{s}_\ell(t), \overline{s}_\ell(t)], \hspace{0.1in} orall t = 1, \dots, T$$

• Daily solar generation forecast as a confidence interval:

$$s_\ell(t) \in [\underline{s}_\ell(t), \overline{s}_\ell(t)], \hspace{0.3cm} orall t = 1, \dots, T$$

• Recall the facilities' operational costs:

$$f_g^\ell(y_g^\ell(t)) = egin{cases} 0 & y_g^\ell(t) \in [0, s_\ell(t)) \ \pi_\ell(t)(y_g^\ell(t) - s_\ell(t)) & y_g^\ell(t) \in [s_\ell(t), s_\ell(t) + G_\ell(t)] \ +\infty & y_g^\ell(t) > s_\ell(t) + G_\ell(t) \end{cases}$$

• Daily solar generation forecast as a confidence interval:

$$s_\ell(t) \in [\underline{s}_\ell(t), \overline{s}_\ell(t)], \hspace{0.3cm} orall t = 1, \dots, T$$

• Recall the facilities' operational costs:

$$f_g^\ell(y_g^\ell(t)) = egin{cases} 0 & y_g^\ell(t) \in [0, s_\ell(t)) \ \pi_\ell(t)(y_g^\ell(t) - s_\ell(t)) & y_g^\ell(t) \in [s_\ell(t), s_\ell(t) + G_\ell(t)) \ +\infty & y_g^\ell(t) > s_\ell(t) + G_\ell(t) \end{cases}$$

• To avoid constraint violations, use $\underline{s}_{\ell}(t)$ in pricing functions

• Daily solar generation forecast as a confidence interval:

$$s_\ell(t) \in [\underline{s}_\ell(t), \overline{s}_\ell(t)], \hspace{0.3cm} orall t = 1, \dots, T$$

• Recall the facilities' operational costs:

$$f_g^\ell(y_g^\ell(t)) = egin{cases} 0 & y_g^\ell(t) \in [0, s_\ell(t)) \ \pi_\ell(t)(y_g^\ell(t) - s_\ell(t)) & y_g^\ell(t) \in [s_\ell(t), s_\ell(t) + G_\ell(t)] \ +\infty & y_g^\ell(t) > s_\ell(t) + G_\ell(t) \end{cases}$$

• To avoid constraint violations, use $\underline{s}_{\ell}(t)$ in pricing functions Using the lower bound solar forecast, the reservation system is α_2 -competitive in social welfare where

$$\alpha_2 = 2 \max_{\mathcal{L}, \mathcal{T}} \Big\{ \Big(\frac{\overline{s}_{\ell}(t) + \mathcal{G}_{\ell}(t)}{\underline{s}_{\ell}(t) + \mathcal{G}_{\ell}(t)} \Big) \ln \Big(\frac{2R(U_g - \pi_{\ell}(t))}{L_g - \pi_{\ell}(t)} \Big) \Big\}.$$

• Ensure that the "social welfare generated" by each arrival is above a "threshold value"

- Ensure that the "social welfare generated" by each arrival is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t))) dy(t) \geq rac{1}{lpha(t)} f^{*'}(p(t)) dp(t)$$

- Ensure that the "social welfare generated" by each arrival is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t))) dy(t) \geq \frac{1}{\alpha(t)} f^{*'}(p(t)) dp(t)$$

"Social welfare generated" \geq "Threshold value"

- Ensure that the "social welfare generated" by each arrival is above a "threshold value"
- Show the online marginal pricing functions, fenchel conjugates, and facilities' operational cost functions satisfy the following *Differential Allocation-Payment Relationship*:

$$(p(t) - f'(y(t))) dy(t) \ge \frac{1}{\alpha(t)} f^{*'}(p(t)) dp(t)$$

"Social welfare generated" \geq "Threshold value"

• Resulting competitive ratio is the maximum $\alpha(t)$ over all facilities, resources, and time.
Comparison with First-Come-First-Serve

Figure: Left: FCFS. Right: Online Mechanism

Online reservation system for public parking facilities via heuristic pricing functions in order to enable smart charging:

1. Admission controller for public parking facility access

- 1. Admission controller for public parking facility access
- 2. Shared resource manager that optimizes smart charging strategies for vehicles admitted to the facilities

- 1. Admission controller for public parking facility access
- 2. Shared resource manager that optimizes smart charging strategies for vehicles admitted to the facilities
- 3. Able to account for stochastic renewable generation

- 1. Admission controller for public parking facility access
- 2. Shared resource manager that optimizes smart charging strategies for vehicles admitted to the facilities
- 3. Able to account for stochastic renewable generation
- 4. Robust to adversarially chosen arrival sequences and is α -competitive in social welfare to the optimal offline solution

Part 2

Constrained Thompson Sampling for Real-Time Electricity Pricing with Grid Reliability Constraints

Demand side management is an increasingly popular control action that can be used to match consumption and generation

• Distributed coordination algorithms to load shape exist

- Distributed coordination algorithms to load shape exist
- Often complicated, require 2-way communication

- Distributed coordination algorithms to load shape exist
- Often complicated, require 2-way communication
- Pricing + observing is a simpler framework

- Distributed coordination algorithms to load shape exist
- Often complicated, require 2-way communication
- Pricing + observing is a simpler framework
- Can we propose a smarter approach within this framework?

Objective: minimize cost $f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})$

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$ Subject to: operational constraints of the grid

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$ Subject to: operational constraints of the grid

How can we solve this without knowing $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

What can the aggregator do to simplify learning a population's load response $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

What can the aggregator do to simplify learning a population's load response $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

• Flexible loads only show a limited number of "load signatures" and can be clustered

What can the aggregator do to simplify learning a population's load response $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

- Flexible loads only show a limited number of "load signatures" and can be clustered
- Due to automation, each flexible load selects its cost minimizing profile

What can the aggregator do to simplify learning a population's load response $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

- Flexible loads only show a limited number of "load signatures" and can be clustered
- Due to automation, each flexible load selects its cost minimizing profile
- Uncertainty in D_τ(p_τ) is reduced to the uncertainty of the number of appliances in each cluster
- Denote the number of flexible appliances in cluster c as $a_c(\mathbf{p}_{ au})$

Stochastic Customer Response

• Random or exogenous parameters lead to variability in temporal and geographical behavior

Stochastic Customer Response

- Random or exogenous parameters lead to variability in temporal and geographical behavior
- We model the coefficients a_c(**p**_τ) as random variables with parameterized distributions, φ_c, based on the posted price signal **p**_τ and an unknown but constant parameter vector θ^{*}

Stochastic Customer Response

- Random or exogenous parameters lead to variability in temporal and geographical behavior
- We model the coefficients a_c(**p**_τ) as random variables with parameterized distributions, φ_c, based on the posted price signal **p**_τ and an unknown but constant parameter vector θ^{*}
- θ^{\star} represents the *true model* for the customers' sensitivity to the price signals

Objective: minimize expected cost $\mathbb{E}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$ Subject to: operational constraints of the grid

How can we solve this without knowing $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

Objective: minimize expected cost $\mathbb{E}_{\{\phi_c\}_{c\in C}}[f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau})]$ Subject to: operational constraints of the grid

How can we solve this without knowing $\mathbf{D}_{\tau}(\mathbf{p}_{\tau})$?

Multi-Armed Bandit

• Aggregator can only learn the consumers' responses (θ^{\star}) by experimenting with different price signals

Multi-Armed Bandit

- Aggregator can only learn the consumers' responses (θ^{\star}) by experimenting with different price signals
- Exploration vs. Exploitation trade-off

Multi-Armed Bandit

- Aggregator can only learn the consumers' responses (θ^*) by experimenting with different price signals
- Exploration vs. Exploitation trade-off
- Goal is to develop a strategy for selecting price signals that balances this trade-off and minimizes the cumulative cost over a given time span

• Assumption 1: Finitely many price signals

- Assumption 1: Finitely many price signals
- Assumption 2: Finite prior, grain of truth

- Assumption 1: Finitely many price signals
- Assumption 2: Finite prior, grain of truth
- Assumption 3: Unique optimal price signal

- Assumption 1: Finitely many price signals
- Assumption 2: Finite prior, grain of truth
- Assumption 3: Unique optimal price signal
- Under assumptions 1-3, Gopalan, et al. [1] proved that the number of suboptimal actions can be bounded and Moradipari, et al. [2] extended this result to account for exogenous parameters, V_τ

^{[1]:} A. Gopalan, S. Mannor, Y. Mansour, 2014

^{[2]:} A. Moradipari, C. Silva, M. Alizadeh, 2018

Con-TS-RTP

Con-TS-RTP with Modified Reliability Constraints

Reliability of Con-TS-RTP

• Assumption 4: $\mathsf{KL}[\ell(\mathsf{D}(\mathsf{p}); \mathsf{p}, \theta^{\star}), \ell(\mathsf{D}(\mathsf{p}); \mathsf{p}, \theta)] \geq \xi^{\star}$

Reliability of Con-TS-RTP

- Assumption 4: $\mathsf{KL}[\ell(\mathsf{D}(\mathsf{p}); \mathsf{p}, \theta^{\star}), \ell(\mathsf{D}(\mathsf{p}); \mathsf{p}, \theta)] \geq \xi^{\star}$
- The true parameter's (θ^*) load profile is separable from other candidate parameters' load profiles $(\theta \neq \theta^*)$

Reliability of Con-TS-RTP

- Assumption 4: $\mathsf{KL}[\ell(\mathsf{D}(\mathsf{p});\mathsf{p},\theta^{\star}),\ell(\mathsf{D}(\mathsf{p});\mathsf{p},\theta)] \geq \xi^{\star}$
- The true parameter's (θ^*) load profile is separable from other candidate parameters' load profiles $(\theta \neq \theta^*)$

Under assumptions 1-4, the Con-TS-RTP algorithm with modified reliability constraints will uphold the distribution grid operational constraints with probability at least 1 - u each day.

Simple Comparison

Figure: Unconstrained vs constrained Thompson Sampling for load shaping with a maximum power constraint

Radial Distribution System Test Case

Learning the True Parameter

Radial Distribution System Test Case

Figure: Evolution of the aggregator's knowledge of the true parameter.

Radial Distribution System Test Case Performance

Figure: Left: Regret at node 10 with $\nu = 0.1$. Right: Deviation of node 10's demand from a specific daily target profile.

Radial Distribution System Test Case Performance

Figure: Distribution system constraint violations avoided by using Con-TS-RTP instead of an unconstrained TS.

Radial Distribution System Test Case Performance

Figure: Regret curves for various system reliability metrics. Each curve is an average of 20 independent simulations.

Conclusion

Con-TS-RTP: an online learning and pricing strategy based on Thompson Sampling for an electricity aggregator attempting to learn customers' electricity usage models while implementing a load shaping program via real-time dispatch signals.

Conclusion

Con-TS-RTP: an online learning and pricing strategy based on Thompson Sampling for an electricity aggregator attempting to learn customers' electricity usage models while implementing a load shaping program via real-time dispatch signals.

Furthermore, Con-TS-RTP accounts for the operation constraints of a distribution system to ensure adequate service and to avoid potential grid failures.

Timeline

Virtual Shared Energy Storage

Virtual Shared Energy Storage

- On-site energy storage systems are emerging in the market
 - Large investment
 - Usage might be minimal and/or irregular

Virtual Shared Energy Storage

- Large investment
- Usage might be minimal and/or irregular
- Instead, contract off-site energy storage
 - Only pay for energy storage when you need it

Virtual Shared Energy Storage

- Large investment
- Usage might be minimal and/or irregular
- Instead, contract off-site energy storage
 - Only pay for energy storage when you need it
- *Virtual Shared Energy Storage* would require a scheduling and pricing mechanism for charging, discharging, and capacity

Virtual Shared Energy Storage

- Large investment
- Usage might be minimal and/or irregular
- Instead, contract off-site energy storage
 - Only pay for energy storage when you need it
- *Virtual Shared Energy Storage* would require a scheduling and pricing mechanism for charging, discharging, and capacity
- Charging and discharging profiles cancel each other

Virtual Shared Energy Storage

- Large investment
- Usage might be minimal and/or irregular
- Instead, contract off-site energy storage
 - Only pay for energy storage when you need it
- Virtual Shared Energy Storage would require a scheduling and pricing mechanism for charging, discharging, and capacity
- Charging and discharging profiles cancel each other
- Incentivize diverse usage patterns to enable charge/discharge cancellations

Thank you!

- Mahnoosh Alizadeh
- Committee
- Gustavo Cezar
- Smart Infrastructure Systems Lab
- UCSB ECE graduate students

Other Work Stanford Marguerite Shuttle

STANFORD UNIVERSITY Palo Alto	Route Name	Daily Trips	Trip Miles
MARGUERITE SHUTTLE	C Line	33	7.00
SISTER INC.	C Limited	11	4.60
balance and the second se	MC Line (AM/PM)	46	3.00
Send and a send and a send	MC Line (Mid Day)	11	5.10
North County August County Aug	P Line (AM/PM)	56	2.50
	P Line (Mid Day)	11	4.00
All and a second a	Research Park (AM/PM)	24	10.40
	X Express (AM)	12	1.20
	X Line	44	4.60
	X Limited (AM)	10	2.00
	X Limited (PM)	10	1.50
	Y Express (PM)	20	1.20
	Y Line	44	4.60
time the second se	Y Limited (AM)	10	2.40
	Y Limited (PM)	10	2.00
and the second s	Totals	352 trips/day	1431.50 miles/day

Figure: Left: Primary service area for Stanford University's Marguerite Shuttle. Right: Stanford Marguerite Shuttle Route Information

Other Work

SLAC & Google Workplace Smart Charging

- Goal: Implement EV load shifting to minimize electricity cost and to ensure total EV charging load does not exceed transformer capacity
- Utilizing scenario generation and stochastic programming to schedule EV charging
- Currently working on implementing algorithm at a SLAC test site and then a Google parking lot

Thompson Sampling

• Algorithm's knowledge on day τ of the unknown parameter θ^{\star} is represented by a prior distribution $\pi_{\tau-1}$
Thompson Sampling

- Algorithm's knowledge on day τ of the unknown parameter θ^{\star} is represented by a prior distribution $\pi_{\tau-1}$
- Each day the algorithm samples $\tilde{\theta}_{\tau}$ from the prior distribution, and selects an price signal assuming that the sampled parameter is the true parameter

Thompson Sampling

- Algorithm's knowledge on day τ of the unknown parameter θ^{\star} is represented by a prior distribution $\pi_{\tau-1}$
- Each day the algorithm samples $\tilde{\theta}_{\tau}$ from the prior distribution, and selects an price signal assuming that the sampled parameter is the true parameter
- The algorithm then makes an observation dependent on the selected price and the hidden parameter and updates the parameter's distribution π_{τ} based on the new observation

Performance Evaluation: Regret

(Pseudo) Regret:

$$R_{\mathcal{T}} = \mathbb{E}\left[\sum_{\tau=1}^{\mathcal{T}} f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau}) - \sum_{\tau=1}^{\mathcal{T}} f(\mathbf{D}_{\tau}(\mathbf{p}^{\star}), \mathbf{V}_{\tau})\right]$$

Performance Evaluation: Regret

(Pseudo) Regret:

$$R_{\mathcal{T}} = \mathbb{E}\left[\sum_{\tau=1}^{\mathcal{T}} f(\mathbf{D}_{\tau}(\mathbf{p}_{\tau}), \mathbf{V}_{\tau}) - \sum_{\tau=1}^{\mathcal{T}} f(\mathbf{D}_{\tau}(\mathbf{p}^{\star}), \mathbf{V}_{\tau})\right]$$

Alternative:

$$\sum_{\mathbf{V}\in\mathcal{V}}\sum_{\mathbf{p}\in\{\mathcal{P}\setminus\mathbf{p}^{\mathbf{V},\star}\}}N_{\mathcal{T}}(\mathbf{p},\mathbf{V})=\sum_{\tau=1}^{\mathcal{T}}\mathbb{1}^{\{\mathbf{p}_{\tau}\neq\mathbf{p}^{\mathbf{V}_{\tau},\star}\}}$$

• Assumption 4: The true parameter's (θ^*) load profile can be sufficiently distinguished from other candidate parameters' load profiles $(\theta \neq \theta^*)$

- Assumption 4: The true parameter's (θ^*) load profile can be sufficiently distinguished from other candidate parameters' load profiles $(\theta \neq \theta^*)$
 - $\mathsf{KL}[\ell(\mathsf{D}(\mathsf{p});\mathsf{p},\theta^{\star}),\ell(\mathsf{D}(\mathsf{p});\mathsf{p},\theta)] \geq \xi^{\star}$

• Assumption 4: The true parameter's (θ^*) load profile can be sufficiently distinguished from other candidate parameters' load profiles $(\theta \neq \theta^*)$

• $\mathsf{KL}[\ell(\mathbf{D}(\mathbf{p});\mathbf{p},\boldsymbol{\theta}^{\star}),\ell(\mathbf{D}(\mathbf{p});\mathbf{p},\boldsymbol{\theta})] \geq \xi^{\star}$

• Under assumptions 1-4, Gopalan, et al. [1] showed that the mass of the true parameter will not decrease below a certain threshold

•
$$\pi_{ au}(oldsymbol{ heta}^{\star}) \geq \pi_{\min}^{\xi^{\star}} \quad orall au$$

• Assumption 4: The true parameter's (θ^*) load profile can be sufficiently distinguished from other candidate parameters' load profiles $(\theta \neq \theta^*)$

• $\mathsf{KL}[\ell(\mathbf{D}(\mathbf{p});\mathbf{p},\boldsymbol{\theta}^{\star}),\ell(\mathbf{D}(\mathbf{p});\mathbf{p},\boldsymbol{\theta})] \geq \xi^{\star}$

• Under assumptions 1-4, Gopalan, et al. [1] showed that the mass of the true parameter will not decrease below a certain threshold

•
$$\pi_{ au}(oldsymbol{ heta}^{\star}) \geq \pi_{\textit{min}}^{\xi^{\star}} \hspace{0.1 in} orall au$$

• With ν chosen such that $\nu \leq \mu \pi_{\min}^{\xi^*}$, the total mass of the incorrect parameters ($\theta \neq \theta^*$) in the prior π_{τ} can never be large enough to satisfy the constraint's inequality without the true parameter also satisfying the constraint

Experimental Evaluation

Figure: Radial Distribution System and Parameters

LinDistFlow Equations

$$\begin{aligned} d^{P}_{i,\tau}(t) + \sum_{j \in \mathcal{K}_{i}} f^{P}_{j,\tau}(t) &= f^{P}_{\mathcal{A}_{i},\tau}(t); \ \forall t,\tau,i \\ d^{Q}_{i,\tau}(t) + \sum_{j \in \mathcal{K}_{i}} f^{Q}_{j,\tau}(t) &= f^{Q}_{\mathcal{A}_{i},\tau}(t); \ \forall t,\tau,i \\ u_{\mathcal{A}_{i},\tau}(t) - 2(f^{P}_{i,\tau}(t)R_{i} + f^{Q}_{i,\tau}(t)X_{i}) &= u_{i,\tau}(t); \ \forall t,\tau,i \end{aligned}$$