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Global Energy Transition

Two Major Components

By 2040, electric cars could outsell gasoline-powered cars
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Transportation Electrification Grid Modernization
® |nfrastructure management ® New flexible loads
e Effects on the grid ® |ncreased renewables

*Both can benefit from optimization and learning mechanisms*
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Part 1
An Online Admission Control Mechanism for Electric Vehicles at
Public Parking Infrastructures
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Smart Charging: Unlocking the Potential of EVs

standard charging

£\ l
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Without smart charging:

® Resulting power demand could negatively affect the grid
(i.e., high demand during peak hours)

® Cannot fully integrate renewable power generation
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Smart Charging at Public Parking Facilities is Overlooked

® Most past work on smart charging focuses on home charging

But... EV owners spend much of their day away from home

Public parking facilities have unused smart charging potential

Can we utilize existing smart charging methods for public
parking facilities equipped with chargers?

*Unfortunately, no*
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Why is Smart Charging at Public Facilities Different?

® Public parking spots with EV chargers are shared resources

® Conflicts over public charger usage
® Low-priority users preventing high-priority users from charging

® Users arrive at random times throughout the day
® Need to allocate arrivals without knowledge of future demand

® Departure times not known without reservation mechanisms

*Require online management systems for admission decisions
and shared resource allocation to enable smart charging*
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System Description

® | dispersed parking facilities with multiple-cable chargers

EVSEB

3) Facility Power

1) Charger Cables -
2) Charger Power
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User Characteristics

Users arrive throughout the day and have different preferences
for parking locations (imagine a campus or a downtown area)

Each user can be characterized by user ‘type’:

9,, = {tn_v t,—,’—, hna {Zn}a {an}} € @

t,: User n's arrival time
tF: User n's departure time

hp: User n's desired energy amount
{€n}: User n's preferred facilities

{Vne}: User n's valuations for charging at each facility ¢
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Parking and Charging Reservation Options

There are a set of options O, that fulfill user n's type (6,):

{ts . t7 {cno ()}, {eny (0)}, {€n}, {vae}}

cM‘(t): Binary cable reservation; 1 if user n is assigned a cable
from EVSE m at facility £ at time t in option o; 0 otherwise

mé

em(t): Charging schedule for user n at EVSE m at facility ¢
in option o

If there were posted prices for these options, users could select
their utility maximizing reservation



Example

EVSE Reservations

Reservation Schedule

/ =1 =2 t=3 t=4 =T
[ [ | Cable C
somc
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Cable C
Cable 1
somc
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Energy
Demaj

Energy Procurement for
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Energy Demand
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Energy Energy
FGr:)Il: Demand

Arrival Sequence:

[ Arrival 1

Figure: Facility schedule after 1 arrival.
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EVSE Reservations

somc
EVSE1

=1 t=2 t=3 t=4

t=T

Cable C

M

t=1

t=T
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Cable 1

somc
EVSE 2

=1 t=2 t=3 t=4

t=T
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Cable C

Cable 1

Energy
Demand

Energy
Demab

Energy Procurement for
Entire Parking Area

=1 =2 t=3 t=4 =T
Solar Energy
Energy Demand
=1 =2 t=3 t=4 =T
Energy Energy
FGr:)Il: Demand

Arrival Sequence:

[ Arrival 1
- Arrival 2

Figure: Facility schedule after 2 arrivals.



Example Reservation Schedule

EVSE Reservations

somc
EVSE1

=1 t=2 t=3 t=4 =T
t=1 t=T

M

Cable C

Cable 1

somc
EVSE 2

=1

n==u.

Cable C

Cable 1

Energy
Demand

Energy
Demab

Energy Procurement for
Entire Parking Area

=1 =2 =3 t=4 =T
Solar Energy
Energy Demand
=1 =2 t=3 t=4 =T
Energy Energy
FGr:)Il: Demand

Arrival Sequence:

[ Arrival 1
- Arrival 2
C] Arrival 3

Figure: Facility schedule after 3 arrivals.



Example Reservation Schedule

EVSE Reservations Energy Procurement for
/ =1 t=2 =3 t=4 .. =T Entire Parking Area
| Cable C t=1 =2 =3 t=4 .. =T
Solar
E
Cable 1 Energy } D:;ragn):i
somc
EVSE1 =1 t=2 =3 t=4 .. =T

=1 =2 t=3 t=4 =T
Energy
Demand Energy
\_ w } ") | Fom }Energv

Grid Demand
/ =1 =2 =3 t=4 .. t=T

Cable C Arrival Sequence:

: [ Arrival 1
Cable 1
somc - Arrival 2

EVSE2 =1 =2 =3 t=4 .. =T
|:|Arrival3

Energy

Demand
\_ / [ Arrival 4

Figure: Facility schedule after 4 arrivals.




Offline Social Welfare Maximization Problem

max Z Vpexmé — Z fg(yé(t))
T.L

X
N,On,E,Mg

subject to:

Z xm <1, VYn
On, L, M,
x™ e {0,1}, VY no0,4,m
yénz(t) < Cfa VE, m,t
v (t) < B, Viem,t



Facilities' Electricity Costs

The energy procurement, yé(t), determines the operational cost of
facility ¢ (i.e., purchasing electricity from the distribution grid):

0 yE(t) € [0, 5(1))
fr(vg(t)) = § me(t)(yE(t) — se(t))  yE(t) € [se(t), selt) + Go(t)]
+00 Vg (t) > su(t) + Gy(t)
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un 2 Vo = > (e (0P (8) + et () (P2 () + pi(1)))
T
® Can instead look at the following:

un—max{O max {v,,g

= Y () + e () (P (1) + p() }
tefty 7]
® |f u, =0, user n does not purchase a reservation

® If u, > 0, user n purchases their utility maximizing parking
and charging reservation, and is charged the following cost:

bt = 3 (Em ()P () + & (P2 (1) + P(1)))

T



How to select parking and charging reservations?

® Can examine the dual constraints:

up, >0
un 2 Vo = > (e (0P (8) + et () (P2 () + pi(1)))
T
® Can instead look at the following:

un—max{O max {v,,g

= Y () + e () (P (1) + p() }
tefty 7]
® |f u, =0, user n does not purchase a reservation

® If u, > 0, user n purchases their utility maximizing parking
and charging reservation, and is charged the following cost:

Bt = > (e (0P (1) + e (e)(p2 (6) + Pi(1)))

T
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Online Solution’'s Goals

Design online reservation mechanism for public facilities
equipped with shared EV chargers to enable smart charging

Make irrevocable admission decisions in an online fashion
Post reservation prices, users select to maximize own utility
Payment at the time of admission

Handle adversarial arrival sequences (due to the unpredictable
arrival distributions)

Provide performance guarantees
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Proposed Solution: Online Marginal Pricing Heuristic

® Facility does not know the future arrival sequence
® Cannot accurately select prices beforehand

Recall: pra = > (Em ()l (£) + &m(e)(pl"(¢) + pL (1))
T
® Proposed Solution: the prices p(t), pT(t), and pﬁ;(t) have
heuristic updating functions
® Determine the prices for the shared resources as users arrive
® We are able to provide performance guarantees for pricing

functions of the following form:

pe(ys(t)) =
ye(®)
(53) (2E72) O yi(t) < si(t)

10

Yy
(Lrpe)) (BB ) T () () > s(t)
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Performance Guarantee: Competitive Ratio

® Competitive ratio:

Optimal Offline Solution's Social Welfare
Worst Case[Online Mechanism's Social Welfare] —

® An online mechanism is “a-competitive” when:

Optimal Offline Solution's Social Welfare
~ Worst Case[Online Mechanism's Social Welfare] —




Online Reservation System Competitive Ratio

The online EV charger reservation system that makes use of our
heuristic price update functions is a;-competitive in social welfare
where

=2y (L))
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Competitive Ratio: Imperfect Solar Forecast

® Daily solar generation forecast as a confidence interval:

se(t) € [so(t),Se(t)], Vt=1,...,T
® Recall the facilities’ operational costs:
0
0 yg(t) € [0, 5(t))
fe (g () = § me(8)(vg(t) = se(1))  ye(t) € [sul), se(t) + Ge(1)]
+00 ya(t) > se(t) + Gy(t)
® To avoid constraint violations, use s,(t) in pricing functions

Using the lower bound solar forecast, the reservation system is
ap-competitive in social welfare where

{0y (R 7)),

ap = 2max
LT
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Proof Outline

® Ensure that the “social welfare generated” by each arrival is
above a “threshold value”

® Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:

a(lt)f*’(p(r))dp(t)
“Threshold value”

v

(p(t) — f'(y()))dy(t)

“Social welfare generated”

v



Proof Outline

Ensure that the “social welfare generated” by each arrival is
above a “threshold value”

Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:

((t) — F(y(t)))dy(t) > a(lt)f*’(p(r))dp(t)

“Social welfare generated” > “Threshold value”

Resulting competitive ratio is the maximum «a(t) over all
facilities, resources, and time.



Comparison with First-Come-First-Serve

User Utility vs Demand (FCFS) User Utility vs Demand (Online Heuristic)
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Conclusion

Online reservation system for public parking facilities via heuristic
pricing functions in order to enable smart charging:

1. Admission controller for public parking facility access

2. Shared resource manager that optimizes smart charging
strategies for vehicles admitted to the facilities

3. Able to account for stochastic renewable generation

4. Robust to adversarially chosen arrival sequences and is
a-competitive in social welfare to the optimal offline solution



Part 2

Constrained Thompson Sampling for Real-Time Electricity Pricing
with Grid Reliability Constraints
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Demand Side Management
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Demand side management is an increasingly popular control action
that can be used to match consumption and generation

® Distributed coordination algorithms to load shape exist
® Often complicated, require 2-way communication
® Pricing + observing is a simpler framework

® Can we propose a smarter approach within this framework?
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@ Post price pr
< Electricity

Observe demand behavior D_(p;) Retailer

Operational constraints of the distribution grid

Daily conditions V.

Objective: minimize expected cost E[f (D (p,), V)]
Subject to: operational constraints of the grid

How can we solve this without knowing D (p-)?
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Load Flexibility Model

What can the aggregator do to simplify learning a population’s
load response D_(p;)?
® Flexible loads only show a limited number of “load signatures”
and can be clustered
® Due to automation, each flexible load selects its cost
minimizing profile
® Uncertainty in D_(p,) is reduced to the uncertainty of the
number of appliances in each cluster

¢ Denote the number of flexible appliances in cluster ¢ as ac(p-)
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Stochastic Customer Response

® Random or exogenous parameters lead to variability in
temporal and geographical behavior

® We model the coefficients ac(p-) as random variables with
parameterized distributions, ¢, based on the posted price
signal p, and an unknown but constant parameter vector 6*

® 0" represents the true model for the customers’ sensitivity to
the price signals
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System Description

@ Post price pr
< Electricity

Observe demand behavior D_(p;) Retailer

Operational constraints of the distribution grid

Daily conditions V.

Objective: minimize expected cost E(yy .. [f(D.(p;), V)]
Subject to: operational constraints of the grid

How can we solve this without knowing D (p-)?
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Multi-Armed Bandit

e Aggregator can only learn the consumers’ responses (6*) by
experimenting with different price signals

® FExploration vs. Exploitation trade-off

® Goal is to develop a strategy for selecting price signals that
balances this trade-off and minimizes the cumulative cost over
a given time span
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Constrained Thompson Sampling (Con-TS-RTP)

® Assumption 1: Finitely many price signals
® Assumption 2: Finite prior, grain of truth
® Assumption 3: Unique optimal price signal

® Under assumptions 1-3, Gopalan, et al. [1] proved that the
number of suboptimal actions can be bounded and
Moradipari, et al. [2] extended this result to account for
exogenous parameters, V.

[1]: A. Gopalan, S. Mannor, Y. Mansour, 2014
[2]: A. Moradipari, C. Silva, M. Alizadeh, 2018



7

/

[9){1’()]\[ £31011909[5] O[RSO[O]]

. )[ Observe daily exogenous parameter V. ]

\ggregator

Con-TS-RTP

Select next daily price signal -
argming B, . [f(D,(p.). V)0 = 6,]
Subject to:
Po).cc [t (1) =0]>1-p Wt
. u >1—p Vit
S5m0 =0, >1-p, Vi

A

A

[ Sample 6, from distribution 7, | ]

Posterior Update:

YSCO:m(S) =15

% t wwf'

pin ypar Gmas

W, ypaz gmas




Con-TS-RTP with Modified Reliability Constraints
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Reliability of Con-TS-RTP

* Assumption 4: KL[((D(p);p,6*),{(D(p); p,0)] > &*

® The true parameter’s (6*) load profile is separable from other
candidate parameters’ load profiles (8 # 6*)

Under assumptions 1-4, the Con-TS-RTP algorithm with
modified reliability constraints will uphold the distribution grid
operational constraints with probability at least 1 — u each day.



Simple Comparison

20 Day5 0 Day 11 20 Day 28 | 0 | Day 395
o R 20 200 ——Target Load Profile
wof 1 180 180 —& ~Unconstrained Leaming
Q Constrained Learning
et | © \ @ 160 160 — +-Oracle
10]® 140 140 —— Apparent Power Flow Limit
120 120 120 120
100
80
so;mrp
40 40 40 40
20 20 20 20
0 0 0 0
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Hour Hour Hour Hour

Figure: Unconstrained vs constrained Thompson Sampling for load
shaping with a maximum power constraint
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Learning the True Parameter
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Figure: Evolution of the aggregator's knowledge of the true parameter.
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Radial Distribution System Test Case

Performance
, Deviation from Daily Target Profile
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Figure: Left: Regret at node 10 with v = 0.1. Right: Deviation of node
10’s demand from a specific daily target profile.

KiloWatts (KW)



Radial Distribution System Test Case

Performance

Constraint Violations Avoided by Con-TS-RTP @ Node 10
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Figure: Distribution system constraint violations avoided by using
Con-TS-RTP instead of an unconstrained TS.



Radial Distribution System Test Case

Performance
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Figure: Regret curves for various system reliability metrics. Each curve is
an average of 20 independent simulations.
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load shaping program via real-time dispatch signals.



Conclusion

Con-TS-RTP: an online learning and pricing strategy based on

Thompson Sampling for an electricity aggregator attempting to
learn customers’ electricity usage models while implementing a

load shaping program via real-time dispatch signals.

Furthermore, Con-TS-RTP accounts for the operation constraints
of a distribution system to ensure adequate service and to avoid
potential grid failures.



Future Plans
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Constrained Thompson Sampling for Real-Time
Electricity Pricing with Grid Reliability Contraints
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Future Plans
Virtual Shared Energy Storage

On-site energy storage systems are emerging in the market

® [arge investment
® Usage might be minimal and/or irregular

Instead, contract off-site energy storage

® Only pay for energy storage when you need it
Virtual Shared Energy Storage would require a scheduling and
pricing mechanism for charging, discharging, and capacity
Charging and discharging profiles cancel each other

Incentivize diverse usage patterns to enable charge/discharge
cancellations



Thank you!

Mahnoosh Alizadeh
Committee
Gustavo Cezar

Smart Infrastructure Systems Lab
UCSB ECE graduate students



Other Work

Stanford Marguerite Shuttle

STANFORD

$ i Route Name Daily Trips Trip Miles
=y 4 C Line 33 7.00
C Limited 11 2.60
MC Line (AM/PM) 16 3.00
MC Line (Mid Day) 11 5.10
P Linc (AM/PM) 56 2.50
P Line (Mid Day) 11 4.00
Rescarch Park (AM/PM) 24 1040
X Express (AM) 12 1.20
X Line 44 4.60
X Limited (AM) 10 2.00
X Limited (PM) 10 150
Y Express (PM) 20 1.20
Y Linc 44 4.60
Y Limited (AM) 10 2.40
Y Limited (PM) 10 2.00

Totals

352 trips/day

1431.50 miles/day

Figure: Left: Primary service area for Stanford University's Marguerite

Shuttle. Right: Stanford Marguerite Shuttle Route Information




Other Work

SLAC & Google Workplace Smart Charging

® Goal: Implement EV load shifting to minimize electricity cost
and to ensure total EV charging load does not exceed
transformer capacity

e Utilizing scenario generation and stochastic programming to
schedule EV charging

e Currently working on implementing algorithm at a SLAC test
site and then a Google parking lot
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Thompson Sampling

e Algorithm’'s knowledge on day 7 of the unknown parameter 6*
is represented by a prior distribution m,_1

® Each day the algorithm samples 57 from the prior distribution,
and selects an price signal assuming that the sampled
parameter is the true parameter

® The algorithm then makes an observation dependent on the
selected price and the hidden parameter and updates the
parameter’s distribution 7, based on the new observation
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Performance Evaluation: Regret

(Pseudo) Regret:

T T

Rr=E Z f(DT(pT)7VT) - Z f(DT(p*)?VT)

=1 T=1

Alternative:

T
Z Z NT(p7 V) = Z ]{Pr;ﬁpvﬂ*}
=1

VEV pe(P\pV+}
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Reliability of Con-TS-RTP

e Assumption 4: The true parameter’s (6*) load profile can be
sufficiently distinguished from other candidate parameters’
load profiles (6 # 6%)

* KL[(D(p);p,0"),L(D(p): p,0)] > &
® Under assumptions 1-4, Gopalan, et al. [1] showed that the

mass of the true parameter will not decrease below a certain
threshold

° 7 (0%) > 7,

>mpn VT

® With v chosen such that v < ;mf;in, the total mass of the
incorrect parameters (@ # 6*) in the prior 7, can never be
large enough to satisfy the constraint’s inequality without the

true parameter also satisfying the constraint



Experimental Evaluation

Linc R ST [ Tine R X s
(103 (10-39) (KVA) (10-3) (1039 (KVA)
17 18 19 20 21 22 23 24 25
- - o o o ® T 212 a2 54 20 1295 309 108
16 2 2073 7435 84 [ 21 151 54 144
3763 82 08 [ 22 508 2. 0.
30 31 32 33 34 35 e inT s e es—ios
15 5 258 844 84 20 316 112 144
> —o—0—0 00 6 105 107 402 |25 93 23 108
7 232 236402 | 26 1107 1126 402
2 27 8 750 267 144 [ 27 21 07 134
14 28 291 o ST FI 0y | TeT ST i
10 11083 677 144 |29 273 218 402
T 637 227 144 [ 30 1746 621 162
7 2 4|31 4 53 .
< A 2 S
21 2 EES 38 -
13 12 11 7 0 BB
> 6 1267 451 144 | 35 1652 588 144
*—& > 1748, T 108 | 36 495 174 134
10 9 8 37 36 oSBT Tos 3T 5% Tt
19 1373 328 108

Figure: Radial Distribution System and Parameters



LinDistFlow Equations

df(6)+ D £0(0) = £ -(2); Ve, 7
JEK;

Q)+ D £ = £ (1) V7
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