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Global Energy Transition
Two Major Components

Transportation Electrification

• Infrastructure management

• Effects on the grid

Grid Modernization

• New flexible loads

• Increased renewables

*Both can benefit from optimization and learning mechanisms*
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Part 1
An Online Admission Control Mechanism for Electric Vehicles at

Public Parking Infrastructures



Smart Charging: Unlocking the Potential of EVs

Without smart charging:

• Resulting power demand could negatively affect the grid
(i.e., high demand during peak hours)

• Cannot fully integrate renewable power generation
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Smart Charging at Public Parking Facilities is Overlooked

• Most past work on smart charging focuses on home charging

• But... EV owners spend much of their day away from home

• Public parking facilities have unused smart charging potential

• Can we utilize existing smart charging methods for public
parking facilities equipped with chargers?

*Unfortunately, no*
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Why is Smart Charging at Public Facilities Different?

• Public parking spots with EV chargers are shared resources
• Conflicts over public charger usage
• Low-priority users preventing high-priority users from charging

• Users arrive at random times throughout the day
• Need to allocate arrivals without knowledge of future demand

• Departure times not known without reservation mechanisms

*Require online management systems for admission decisions
and shared resource allocation to enable smart charging*
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User Characteristics

• Users arrive throughout the day and have different preferences
for parking locations (imagine a campus or a downtown area)

• Each user can be characterized by user ‘type’:

θn = {t−n , t+n , hn, {`n}, {vn`}} ∈ Θ

• t−n : User n’s arrival time

• t+n : User n’s departure time

• hn: User n’s desired energy amount

• {`n}: User n’s preferred facilities

• {vn`}: User n’s valuations for charging at each facility `
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Parking and Charging Reservation Options

• There are a set of options On that fulfill user n’s type (θn):

{t−n , t+n , {cm`no (t)}, {em`no (t)}, {`n}, {vn`}}

• cm`no (t): Binary cable reservation; 1 if user n is assigned a cable
from EVSE m at facility ` at time t in option o; 0 otherwise

• em`no (t): Charging schedule for user n at EVSE m at facility `
in option o

• If there were posted prices for these options, users could select
their utility maximizing reservation
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Example Reservation Schedule

Figure: Facility schedule after 1 arrival.
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Figure: Facility schedule after 2 arrivals.
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Figure: Facility schedule after 3 arrivals.



Example Reservation Schedule

Figure: Facility schedule after 4 arrivals.



Offline Social Welfare Maximization Problem

max
x

∑
N ,On,L,M`

vn`x
m`
no −

∑
T ,L

f `g (y `g (t))

subject to:∑
On,L,M`

xm`no ≤ 1, ∀ n

xm`no ∈ {0, 1}, ∀ n, o, `,m
ym`c (t) ≤ C`, ∀ `,m, t
ym`e (t) ≤ E`, ∀ `,m, t



Facilities’ Electricity Costs

The energy procurement, y `g (t), determines the operational cost of
facility ` (i.e., purchasing electricity from the distribution grid):

f `g (y `g (t)) =


0 y `g (t) ∈ [0, s`(t)

)
π`(t)(y `g (t)− s`(t)) y `g (t) ∈ [s`(t), s`(t) + G`(t)]

+∞ y `g (t) > s`(t) + G`(t)



How to select parking and charging reservations?

• Can examine the dual constraints:

un ≥ 0

un ≥ vn` −
∑
T

(
cm`no (t)pm`c (t) + em`no (t)

(
pm`e (t) + p`g (t)

))

• Can instead look at the following:

un = max
{

0, max
On,L,M`

{
vn`

−
∑

t∈[t−n ,t+n ]

(
cm`no (t)pm`c (t) + em`no (t)(pm`e (t) + p`g (t))

)}}
• If un = 0, user n does not purchase a reservation

• If un > 0, user n purchases their utility maximizing parking
and charging reservation, and is charged the following cost:

p̂m`no =
∑
T

(
ĉm`no (t)pm`c (t) + êm`no (t)(pm`e (t) + p`g (t))

)
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Online Solution’s Goals

• Design online reservation mechanism for public facilities
equipped with shared EV chargers to enable smart charging

• Make irrevocable admission decisions in an online fashion

• Post reservation prices, users select to maximize own utility

• Payment at the time of admission

• Handle adversarial arrival sequences (due to the unpredictable
arrival distributions)

• Provide performance guarantees
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Proposed Solution: Online Marginal Pricing Heuristic
• Facility does not know the future arrival sequence

• Cannot accurately select prices beforehand

Recall: p̂m`no =
∑
T

(
ĉm`no (t)pm`c (t) + êm`no (t)(pm`e (t) + p`g (t))

)
• Proposed Solution: the prices pm`c (t), pm`e (t), and p`g (t) have

heuristic updating functions
• Determine the prices for the shared resources as users arrive

• We are able to provide performance guarantees for pricing
functions of the following form:

p`g (y `g (t)) =
(

Lg
2R

)(
2Rπ`(t)

Lg

) y`g (t)

s`(t) y `g (t) < s`(t)(
Lg−π`(t)

2R

)(
2R(Ug−π`(t))

Lg−π`(t)

) y`g (t)

s`(t)+G`(t) + π`(t) y `g (t) ≥ s`(t)



Proposed Solution: Online Marginal Pricing Heuristic
• Facility does not know the future arrival sequence
• Cannot accurately select prices beforehand

Recall: p̂m`no =
∑
T

(
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Performance Guarantee: Competitive Ratio

• Competitive ratio:

Optimal Offline Solution’s Social Welfare

Worst Case[Online Mechanism’s Social Welfare]
≥ 1

• An online mechanism is “α-competitive” when:

α ≥ Optimal Offline Solution’s Social Welfare

Worst Case[Online Mechanism’s Social Welfare]
≥ 1
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Online Reservation System Competitive Ratio

The online EV charger reservation system that makes use of our
heuristic price update functions is α1-competitive in social welfare
where

α1 = 2 max
L,T

{
ln
(2R(Ug − π`(t))

Lg − π`(t)

)}
.



Competitive Ratio: Imperfect Solar Forecast

• Daily solar generation forecast as a confidence interval:

s`(t) ∈ [s`(t), s`(t)], ∀t = 1, . . . ,T

• Recall the facilities’ operational costs:

f `g (y `g (t)) =


0 y `g (t) ∈ [0, s`(t)

)
π`(t)(y `g (t)− s`(t)) y `g (t) ∈ [s`(t), s`(t) + G`(t)]

+∞ y `g (t) > s`(t) + G`(t)

• To avoid constraint violations, use s`(t) in pricing functions

Using the lower bound solar forecast, the reservation system is
α2-competitive in social welfare where

α2 = 2 max
L,T

{(s`(t) + G`(t)

s`(t) + G`(t)

)
ln
(2R(Ug − π`(t))

Lg − π`(t)

)}
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s`(t) ∈ [s`(t), s`(t)], ∀t = 1, . . . ,T

• Recall the facilities’ operational costs:

f `g (y `g (t)) =


0 y `g (t) ∈ [0, s`(t)

)
π`(t)(y `g (t)− s`(t)) y `g (t) ∈ [s`(t), s`(t) + G`(t)]

+∞ y `g (t) > s`(t) + G`(t)

• To avoid constraint violations, use s`(t) in pricing functions

Using the lower bound solar forecast, the reservation system is
α2-competitive in social welfare where

α2 = 2 max
L,T

{(s`(t) + G`(t)

s`(t) + G`(t)

)
ln
(2R(Ug − π`(t))

Lg − π`(t)

)}
.



Proof Outline

• Ensure that the “social welfare generated” by each arrival is
above a “threshold value”

• Show the online marginal pricing functions, fenchel
conjugates, and facilities’ operational cost functions satisfy
the following Differential Allocation-Payment Relationship:(

p(t)− f ′(y(t))
)
dy(t) ≥ 1

α(t)
f ∗
′
(p(t))dp(t)

“Social welfare generated” ≥ “Threshold value”

• Resulting competitive ratio is the maximum α(t) over all
facilities, resources, and time.
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Comparison with First-Come-First-Serve

Figure: Left: FCFS. Right: Online Mechanism



Conclusion

Online reservation system for public parking facilities via heuristic
pricing functions in order to enable smart charging:

1. Admission controller for public parking facility access

2. Shared resource manager that optimizes smart charging
strategies for vehicles admitted to the facilities

3. Able to account for stochastic renewable generation

4. Robust to adversarially chosen arrival sequences and is
α-competitive in social welfare to the optimal offline solution
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Part 2
Constrained Thompson Sampling for Real-Time Electricity Pricing

with Grid Reliability Constraints



Demand Side Management

Demand side management is an increasingly popular control action
that can be used to match consumption and generation

• Distributed coordination algorithms to load shape exist

• Often complicated, require 2-way communication

• Pricing + observing is a simpler framework

• Can we propose a smarter approach within this framework?
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Load Flexibility Model

What can the aggregator do to simplify learning a population’s
load response Dτ (pτ )?

• Flexible loads only show a limited number of “load signatures”
and can be clustered

• Due to automation, each flexible load selects its cost
minimizing profile

• Uncertainty in Dτ (pτ ) is reduced to the uncertainty of the
number of appliances in each cluster

• Denote the number of flexible appliances in cluster c as ac(pτ )
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Stochastic Customer Response

• Random or exogenous parameters lead to variability in
temporal and geographical behavior

• We model the coefficients ac(pτ ) as random variables with
parameterized distributions, φc , based on the posted price
signal pτ and an unknown but constant parameter vector θ?

• θ? represents the true model for the customers’ sensitivity to
the price signals
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Multi-Armed Bandit

• Aggregator can only learn the consumers’ responses (θ?) by
experimenting with different price signals

• Exploration vs. Exploitation trade-off

• Goal is to develop a strategy for selecting price signals that
balances this trade-off and minimizes the cumulative cost over
a given time span
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• Assumption 1: Finitely many price signals

• Assumption 2: Finite prior, grain of truth

• Assumption 3: Unique optimal price signal

• Under assumptions 1-3, Gopalan, et al. [1] proved that the
number of suboptimal actions can be bounded and
Moradipari, et al. [2] extended this result to account for
exogenous parameters, Vτ
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Constrained Thompson Sampling (Con-TS-RTP)

• Assumption 1: Finitely many price signals

• Assumption 2: Finite prior, grain of truth

• Assumption 3: Unique optimal price signal

• Under assumptions 1-3, Gopalan, et al. [1] proved that the
number of suboptimal actions can be bounded and
Moradipari, et al. [2] extended this result to account for
exogenous parameters, Vτ

[1]: A. Gopalan, S. Mannor, Y. Mansour, 2014
[2]: A. Moradipari, C. Silva, M. Alizadeh, 2018



Con-TS-RTP



Con-TS-RTP with Modified Reliability Constraints



Reliability of Con-TS-RTP

• Assumption 4: KL
[
`(D(p);p,θ?), `(D(p);p,θ)

]
≥ ξ?

• The true parameter’s (θ?) load profile is separable from other
candidate parameters’ load profiles (θ 6= θ?)

Under assumptions 1-4, the Con-TS-RTP algorithm with
modified reliability constraints will uphold the distribution grid
operational constraints with probability at least 1− u each day.
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Simple Comparison

Figure: Unconstrained vs constrained Thompson Sampling for load
shaping with a maximum power constraint



Radial Distribution System Test Case
Learning the True Parameter

Figure: Evolution of the aggregator’s knowledge of the true parameter.
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Figure: Evolution of the aggregator’s knowledge of the true parameter.



Radial Distribution System Test Case
Performance

Figure: Left: Regret at node 10 with ν = 0.1. Right: Deviation of node
10’s demand from a specific daily target profile.



Radial Distribution System Test Case
Performance

Figure: Distribution system constraint violations avoided by using
Con-TS-RTP instead of an unconstrained TS.



Radial Distribution System Test Case
Performance

Figure: Regret curves for various system reliability metrics. Each curve is
an average of 20 independent simulations.



Conclusion

Con-TS-RTP: an online learning and pricing strategy based on
Thompson Sampling for an electricity aggregator attempting to
learn customers’ electricity usage models while implementing a
load shaping program via real-time dispatch signals.

Furthermore, Con-TS-RTP accounts for the operation constraints
of a distribution system to ensure adequate service and to avoid
potential grid failures.
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Future Plans
Virtual Shared Energy Storage

• On-site energy storage systems are emerging in the market

• Large investment
• Usage might be minimal and/or irregular

• Instead, contract off-site energy storage
• Only pay for energy storage when you need it

• Virtual Shared Energy Storage would require a scheduling and
pricing mechanism for charging, discharging, and capacity

• Charging and discharging profiles cancel each other

• Incentivize diverse usage patterns to enable charge/discharge
cancellations
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• Smart Infrastructure Systems Lab
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Other Work
Stanford Marguerite Shuttle

Figure: Left: Primary service area for Stanford University’s Marguerite
Shuttle. Right: Stanford Marguerite Shuttle Route Information



Other Work
SLAC & Google Workplace Smart Charging

• Goal: Implement EV load shifting to minimize electricity cost
and to ensure total EV charging load does not exceed
transformer capacity

• Utilizing scenario generation and stochastic programming to
schedule EV charging

• Currently working on implementing algorithm at a SLAC test
site and then a Google parking lot



Thompson Sampling

• Algorithm’s knowledge on day τ of the unknown parameter θ?

is represented by a prior distribution πτ−1

• Each day the algorithm samples θ̃τ from the prior distribution,
and selects an price signal assuming that the sampled
parameter is the true parameter

• The algorithm then makes an observation dependent on the
selected price and the hidden parameter and updates the
parameter’s distribution πτ based on the new observation
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Performance Evaluation: Regret

(Pseudo) Regret:

RT = E

[ T∑
τ=1

f (Dτ (pτ ),Vτ )−
T∑
τ=1

f (Dτ (p?),Vτ )

]

Alternative:

∑
V∈V

∑
p∈{P\pV,?}

NT (p,V) =
T∑
τ=1

1
{pτ 6=pVτ ,?}
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Reliability of Con-TS-RTP

• Assumption 4: The true parameter’s (θ?) load profile can be
sufficiently distinguished from other candidate parameters’
load profiles (θ 6= θ?)

• KL
[
`(D(p);p,θ?), `(D(p);p,θ)

]
≥ ξ?

• Under assumptions 1-4, Gopalan, et al. [1] showed that the
mass of the true parameter will not decrease below a certain
threshold
• πτ (θ?) ≥ πξ

?

min ∀τ
• With ν chosen such that ν ≤ µπξ

?

min, the total mass of the
incorrect parameters (θ 6= θ?) in the prior πτ can never be
large enough to satisfy the constraint’s inequality without the
true parameter also satisfying the constraint



Reliability of Con-TS-RTP

• Assumption 4: The true parameter’s (θ?) load profile can be
sufficiently distinguished from other candidate parameters’
load profiles (θ 6= θ?)
• KL

[
`(D(p);p,θ?), `(D(p);p,θ)

]
≥ ξ?

• Under assumptions 1-4, Gopalan, et al. [1] showed that the
mass of the true parameter will not decrease below a certain
threshold
• πτ (θ?) ≥ πξ

?

min ∀τ
• With ν chosen such that ν ≤ µπξ

?

min, the total mass of the
incorrect parameters (θ 6= θ?) in the prior πτ can never be
large enough to satisfy the constraint’s inequality without the
true parameter also satisfying the constraint



Reliability of Con-TS-RTP

• Assumption 4: The true parameter’s (θ?) load profile can be
sufficiently distinguished from other candidate parameters’
load profiles (θ 6= θ?)
• KL

[
`(D(p);p,θ?), `(D(p);p,θ)

]
≥ ξ?

• Under assumptions 1-4, Gopalan, et al. [1] showed that the
mass of the true parameter will not decrease below a certain
threshold
• πτ (θ?) ≥ πξ

?

min ∀τ

• With ν chosen such that ν ≤ µπξ
?

min, the total mass of the
incorrect parameters (θ 6= θ?) in the prior πτ can never be
large enough to satisfy the constraint’s inequality without the
true parameter also satisfying the constraint



Reliability of Con-TS-RTP

• Assumption 4: The true parameter’s (θ?) load profile can be
sufficiently distinguished from other candidate parameters’
load profiles (θ 6= θ?)
• KL

[
`(D(p);p,θ?), `(D(p);p,θ)

]
≥ ξ?

• Under assumptions 1-4, Gopalan, et al. [1] showed that the
mass of the true parameter will not decrease below a certain
threshold
• πτ (θ?) ≥ πξ

?

min ∀τ
• With ν chosen such that ν ≤ µπξ

?

min, the total mass of the
incorrect parameters (θ 6= θ?) in the prior πτ can never be
large enough to satisfy the constraint’s inequality without the
true parameter also satisfying the constraint



Experimental Evaluation

Figure: Radial Distribution System and Parameters



LinDistFlow Equations

dP
i ,τ (t) +

∑
j∈Ki

f Pj ,τ (t) = f PAi ,τ
(t); ∀t, τ, i

dQ
i ,τ (t) +

∑
j∈Ki

f Qj ,τ (t) = f QAi ,τ
(t); ∀t, τ, i

uAi ,τ (t)− 2
(
f Pi ,τ (t)Ri + f Qi ,τ (t)Xi

)
= ui ,τ (t); ∀t, τ, i
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